
PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 1

PCI GP
User’s Guide

Revision: B
July 2005

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 2

The information in this document is subject to change without notice and does not represent a commitment on the
part of Engineering Design Team, Inc. The software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be used or copied only in accordance with the terms of
the agreement.
Engineering Design Team, Inc. (“EDT”), makes no warranties, express or implied, including without limitation
the implied warranties of merchantibility and fitness for a particular purpose, regarding the software described in
this document (“the software”). EDT does not warrant, guarantee, or make any representations regarding the use
or the results of the use of the software in terms of its correctness, accuracy, reliability, currentness, or otherwise.
The entire risk as to the results and performance of the software is assumed by you. The exclusion of implied
warranties is not permitted by some jurisdictions. The above exclusion may not apply to you.
In no event will EDT, its directors, officers, employees, or agents be liable to you for any consequential,
incidental, or indirect damages (including damages for loss of business profits, business interruption, loss of
business information, and the like) arising out of the use or inability to use the software even if EDT has been
advised of the possibility of such damages. Because some jurisdictions do not allow the exclusion or limitation of
liability for consequential or incidental damages, the above limitations may not apply to you. EDT’s liability to
you for actual damages for any cause whatsoever, and regardless of the form of the action (whether in contract,
tort [including negligence], product liability or otherwise), will be limited to $50.
No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical,
without the express written agreement of Engineering Design Team, Inc.
© Copyright Engineering Design Team, Inc. 1997–2005. All rights reserved.
Sun, SunOS, SBus, SPARC, and SPARCstation are trademarks of Sun Microsystems, Incorporated.
Windows NT/2000/XP is a registered trademark of Microsoft Corporation.
Intel and Pentium are registered trademarks of Intel Corporation.
UNIX is a registered trademark of X/Open Company, Ltd.
OPEN LOOK is a registered trademark of UNIX System Laboratories, Inc.
Red Hat is a trademark of Red Hat Software, Inc.
IRex is a trademark of Silicon Graphics, Inc.
AIX is a registered trademark of International Business Machines Corporation.
Xilinx is a registered trademark of Xilinx, Inc.
Kodak is a trademark of Eastman Kodak Company.
The software described in this manual is based in part on the work of the independent JPEG Group.
EDT and Engineering Design Team are trademarks of Engineering Design Team, Inc.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 3

Control Information
Control Item Details

Document Owner Hardware: Jerry Gaffke
Software: Chet Britten

Information Label EDT Public
Supersedes None
File Location c:/pcigp/pcigp.doc
Document Number 008-00965

Revision History
Revision Date Revision Description Originator
A 04-March-02 Convert from FrameMaker S Vasil
B 05-Jul-05 Update “Verifying the Installation” and “Upgrading the

Firmware” sections.
M Mason

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 4

Contents
Overview ..5

Installation ...6
Verifying the Installation...6
Configuring the PCI GP ...7

PCD64...7
PCDSSD or PCD16...7

Example...9
Building the Sample Programs ..9

UNIX-based Systems ..9
Windows NT/2000/XP Systems ..10

Uninstalling ..10
Solaris-based Systems..10
Linux Systems...11
Windows NT/2000/XP Systems ..11

Upgrading the Firmware ..11
Input and Output ..12
Elements of EDT Interface Applications ..12
DMA Library Routines..14
EDT Message Handler Library...53

Message Definitions ..54
Files...55

Output Clock Generation..60

Registers..63
Configuration Space ..63
PCI Local Bus Addresses ..64
Scatter-gather DMA ...67

Performing DMA..68
Interrupt Registers ...75

Specifications..77

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 5

Overview
The PCI Bus General Purposes (PCI GP) interface is a single-slot, configurable DMA board
for PCI bus-based computer systems. The PCI GP supports, but is not limited to, 4- and 16-
channel serial operation. It is designed for continuous input or output between a user device
and PCI bus host memory. This interface is typically used to move data between a PCI bus
host computer and devices such as scanners, plotters, imaging devices, satellite receivers, or
research prototypes. The PCI GP uses a simple synchronous protocol for transferring data.
The PCI GP supports scatter-gather Direct Memory Access (DMA) in hardware, adapting to
the memory management model of the host architecture. It includes a device driver and
software library, enabling applications to access the PCI GP and transfer data continuously or
in bursts across the PCI interface using standard library calls.
The PCI GP is extremely flexible, and daughter boards and other add-ons can be used to
configure the PCI GP for a variety of uses. See the addenda for more information on specific
configurations.
The input and output FIFO buffers are used to smooth data transfer between the PCI bus and
the user device, accommodating data during the transition from one DMA to the next. DMA
transfers are queued in hardware, minimizing the amount of FIFO required.
This manual describes the operation of the PCI GP with the UNIX-based and Windows
NT/2000/XP operating systems.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 6

Installation
Uninstall previous driver if there is one.
If you are using a DELL computer, you should be aware that for some models, DELL
recommends high data rate cards (such as video and framegrabbers) be placed in one of the
first two slots (closest to the AGP connector). The lower two PCI bus slots are only
recommended for lower speed devices such as audio/modems/etc.
Other computer manufacturers may have similar requirements. Consult your computer
manufacturer's documentation for more information.
After installing the PCI GP, verify the installation, configure the device, and build the sample
programs, if you wish. Instructions for uninstalling the software or upgrading the firmware on
page 10.

Verifying the Installation
To verify that installation was successful and that the PCI GP is operating correctly:
1. Run pciload.
2. Verify that you are running pcd64.bit.

Note: gp_xtest will only work with systems running pcd64.bit. To use gp_xtest with
a different configuration file, run pciload pcd64.bit, cycle power, run gp_xtest,
then re-run pciload with the correct configuration file for your board.

3. In Windows, run PCD Utilities. On Linux, bring up an xterm and CD to /opt/EDTpcd.
4. At the command prompt, enter:

gp_xtest 4096

GP_xtest returns test status information. You will be prompted to press Return at certain steps.
The following is an example of proper behavior, although details will vary (see addenda for
information specific to your configuration):

red# gp_xtest –u 1024
file <./gp_xtest.bit>
id: “gp_xtest.ncd 4036xlabg352 2002/04.01 10:18:13” loaded
reading 1024 words
buf at 26000
testing dirreg at 4 4
testing dirout at 8 8
testing dirin at 8 c
testing ctlout at a a
testing ctlin at a e
return to read:
Done.
0000 0100 0200 0300 0400 0500 0600 0700
Notice: need to swap bytes (big endian)
checking data
1024 words 0 errors loop 0

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 7

start speedtest? : y
reading 100 buffers of 1048576 bytes from unit 1 with 4 bufs
return to start:

19999610.794337 bytes/sec
time 5 .242982
Hit return to exit

red#

Configuring the PCI GP
The PCI GP can be configured to run in several modes. There are three different PCI interfaces
that need a matching user interface: PCD64 (single-channel DMA, 64-word burst); PCDSSD
(4-channel DMA); PCD16 (16-channel DMA). PCD64 uses gp_pcd.bit or gp_pcd8.bit,
PCDSSD uses gpssd4.bit, and PCD16 uses gp_ssd16.bit. Before running the device, decide
which of these modes is appropriate for your application and configure it according to the
following directions:

PCD64
You configure the PCI GP by downloading a configuration file (.bit file) to the Xilinx field-
programmable gate array.
To configure the PCI GP:
1. Run PCD Utilities.
2. At the command prompt, enter:

pcdrequest

3. Read the description of the signals and options.
4. Enter the associated option number (UNIX-based systems), or click the radio button next

to the desired mode of operation and then click OK (Windows NT/2000/XP/2000/XP
systems).

pcdrequest creates a script or batch file pcdload, which contains the commands needed to
download the appropriate firmware file into the on-board gate array. pcdload runs
immediately, as well as whenever the computer is rebooted (except on NT systems).
To reselect the default Xilinx firmware file at a later time, rerun pcdrequest, or edit the
pcdload script file by hand.
Note gp_xtest downloads its own test bit file automatically; after running gp_xtest, run

pcdload to reload the default bit file.

PCDSSD or PCD16
The register set of PCDSSD and PCD16 are complex and numerous; therefore, the user must
configure the board using initpcd.
The following commands will load the gpssd16 configuration file and configure unit 0 for 16
inputs and unit 1 for 16 outputs:

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 8

% cd ./opt/EDTpcd

% ./initpcd –u 0 –v –f rd16.cfg

% ./initpcd –u 1 –v –f wr16.cfg

Without the –v option, initpcd is silent.
Complete documentation for initpcd can be found as as a man(1) formatted comment in
/opt/EDTpcd/initpcd.c (UNIX) or \edt\pcd (Windows).
Several standard configurations for the CHEN, CHDIR, CHEDGE, and PCD Direction
registers are provided as initpcd configuration files:
rd16.cfg Channels 0-15 configured as inputs
wr16.cfg Channels 0-15 configured as outputs
rdwr16.cfg Channels 0-7 configured as inputs, 8-15 as outputs

In the following standard configuration file listings, the command_reg has the ENABLE bit set
to enable the PCD, and the funct_Preg has the PLL_CLK_SELECT bit set to use the internal
PLL clock instead of the PCD clock (the PLL clock is used only for driving output clocks).
Note that rd16.cfg uses the falling clock edge, while wr16.cfg uses the rising clock edge.
Standard configuration file listings:
rd16.cfg
bitfile gpssd16.bit
command_reg 0x08
funct_reg 0x80
ssd16_chen_reg 0xFFFF
ssd16_chdir_reg 0x0000
ssd16_chedge_reg 0x0000
direction_reg 0xFCF0
flush_fifo 1
wr16.cfg
bitfile gpssd16.bit
command_reg 0x08
funct_reg 0x80
ssd16_chen_reg 0xFFFF
ssd16_chdir_reg 0xFFFF
ssd16_chedge_reg 0xFFFF
direction_reg 0xC30F
flush_fifo 1
rdwr16.cfg
bitfile gpssd16.bit

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 9

command_reg 0x08
funct_reg 0x80
ssd16_chen_reg 0xFFFF
ssd16_chdir_reg 0xFF00
ssd16_chedge_reg 0xFF00

Example
The following configuration file will program the GPSSD16 with channels 0–7 as inputs and
channels 8–15 as outputs.
rdwr16.cfg
bitfile gpssd16.bit
command_reg 0x08
funct_reg 0x80
ssd16_chen_reg 0xFFFF
ssd16_chdir_reg 0xFF00
ssd16_chedge_reg 0xFF00
direction_reg 0xC3F0
flush_fifo 1

In this example:
• The lowest nibble enables inputs for channels 0–7
• The second lowest nibble disables outputs for channels 0–7
• The second highest nibble disables inputs and enables outputs for channels 8–11
• The two lower bits of the highest nibble enables outputs for channels 12–15. The two

highest bits are always high.
Note: “flush_fifo: 1” should always be included as the FIFO flush enables the Xilinx state
machine. The gpssd16 won’t run without this.

Building the Sample Programs
UNIX-based Systems
• To build any of the example programs on UNIX-based systems, bring up cd and navigate

to /opt/EDTpcd, then enter the command:
make file

where file is the name of the example program you wish to install.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 10

• To build and install all the example programs, enter the command:
make

All example programs display a message that explains their usage when you enter their names
without parameters.

Windows NT/2000/XP Systems

To build any of the example programs on Windows NT/2000/XP systems, you must have
VC++ installed, then:
1. Run PCD Utilities.
2. Enter the command:

nmake file

where file is the name of the example program you wish to build.
• To build and install all the example programs, simply enter the command:

nmake

All example programs display a message that explains their usage when you enter their names
without parameters.
• You can also build the sample programs by setting up a project in Windows Visual C++.

Uninstalling
Solaris-based Systems

To remove the PCI CD driver on Solaris-based systems:
1. Become root or superuser.
2. Enter:

pkgrm EDTpcd

For further details, consult your operating system documentation, or call Engineering Design
Team.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 11

Linux Systems

To remove the PCI CD driver on Linux systems:
1. Become root or superuser.
2. Enter:

cd /opt/EDTpcd
make unload
cd /
rm –rf /opt/EDTpcd

Windows NT/2000/XP Systems

To remove the PCI CD toolkit on Windows NT/2000/XP systems, use the Windows
NT/2000/XP Add/Remove utility. For further details, consult your Windows NT/2000/XP
documentation.
You can always get the most recent update of the software from our web site, www.edt.com.
See the document titled Contact Us.

Upgrading the Firmware
After upgrading to a new device driver, it may sometimes also be necessary to upgrade the PCI
interface Xilinx PROM. If so, the readme file will say so. This is not necessary with first-time
installations.
The Xilinx file is downloaded to the board’s PCI interface Xilinx PROM using the pciload
program:

1. If necessary, navigate to the directory in which you installed the driver (for UNIX-
based systems, usually /opt/EDTpcd; for Windows NT/2000/XP, usually C:\EDT\pcd).

2. At the prompt, enter (depending on which EDT board you have):
pciload -u 0 pcd64.bit /*For single-channel*/
or
pciload –u 0 pcdssd.bit /* For 4-channel */
or

pciload -u 0 pcd16.bit /* For 16-channel */

Shut down the operating system and turn the host computer off and then back on again. The
board reloads firmware from flash ROM only during power-up. Therefore, after running
pciload, the new bit file is not in the Xilinx until the system has been power-cycled; simply
rebooting is not adequate.
pciload can also be used to detect which boards are in the system and verify their firmware
levels. To check the board’s Xilinx PROM against the Xilinx file in the current package, run

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 12

pciload –u 0 –v pcd64.bit /* For single-channel*/
or
pciload –u 0 –v pcdssd.bit /* For 4-channel */
or

pciload –u 0 -v pcd16.bit / *For 16-channel */

To obtain a list of all the EDT boards currently installed in the system with their unit numbers
and PCI firmware dates and revisions, simply enter the pciload command without arguments:

pciload

Input and Output
The EDT Product device driver can perform two kinds of DMA transfers: continuous and
noncontinuous. For noncontinuous transfers, the driver uses DMA system calls read() and
write(). Each read() and write() system call allocates kernel resources, during which time
DMA transfers are interrupted.
To perform continuous transfers, use the ring buffers. The ring buffers are a set of buffers that
applications can access continuously, reading and writing as required. When the last buffer in
the set has been accessed, the application then cycles back to the first buffer. See
edt_configure_ring_buffers() for a complete description of the ring buffer parameters that you
can configure. See the sample programs simple_getdata.c and simple_putdata.c distributed
with the driver for examples of using the ring buffers.

Note For portability, use the library calls edt_reg_read, edt_reg_write,
edt_reg_or, or edt_reg_and to read or write the hardware registers, rather than
using ioctls.

Elements of EDT Interface Applications
Applications for performing continuous transfers typically include the following elements:

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 13

#include "edtinc.h"

main()
{
 EdtDev *edt_p = edt_open("edt", 0) ;
 char *buf_ptr; int outfd = open("outfile", 1) ;

 /* Configure a ring buffer with four 1MB buffers */
 edt_configure_ring_buffers(edt_p, 1024*1024, 4, EDT_READ,
NULL) ;

 edt_start_buffers(edt_p, 0) ; /* 0 starts unlimited buffer
DMA*/

 /* This loop will capture data indefinitely, but the
write()
 * (or whatever processing on the data) must be able to
keep up. */
 while ((buf_ptr = edt_wait_for_buffers(edt_p, 1)) != NULL)
 write(outfd, buf_ptr, 1024*1024) ;

 edt_close(edt_p) ;
}

Applications for performing noncontinuous transfers typically include the following elements.
This example opens a specific DMA channel with edt_open_channel(), assuming that a multi-
channel Xilinx firmware file has been loaded:

#include "edtinc.h"

main()
{
 EdtDev *edt_p = edt_open_channel("edt", 1, 2) ;
 char buf[1024] ;
 int numbytes, outfd = open("outfile", 1) ;
 /*
 * Becase read()s are noncontinuous, unless is there
hardware
 * handshaking there will be gaps in the data between each
read().
 */
 while ((numbytes = edt_read(edt_p, buf, 1024)) > 0)
 write(outfd, buf, numbytes) ;

 edt_close(edt_p) ;
}

You can use ring buffer mode for real-time data capture using a small number of (typically 1
MB) buffers configured in a round-robin data FIFO. During capture, the application must be
able to transfer or process the data before data acquisition wraps around and overwrites the
buffer currently being processed.
The example below shows real-time data capture using ring buffers, although it includes no
error-checking. In this example, process_data(bufptr) must execute in the same amount of time
it takes DMA to fill a single buffer, or faster.

#include "edtinc.h"

main()
{
 EdtDev *edt_p = edt_open("edt", 0) ;

 /* Configure four 1 MB buffers:

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 14

 * one for DMA
 * one for the second DMA register on most EDT boards
 * one for "process_data(bufptr)" to work on
 * one to keep DMA away from "process_data()"
 */
 edt_configure_ring_buffers(edt_p, 0x100000, 4, EDT_READ,
NULL) ;

 edt_start_buffers(edt_p, 0) ; /* 0 starts unlimited buffer
DMA */

 for (;;)
 {
 char *bufptr ;

 /* Wait for each buffer to complete, then process it.
 * The driver continues DMA concurrently with processing.
 */
 bufptr = edt_wait_for_buffers(edt_p, 1) ;
 process_data(bufptr) ;
 }
}

If running under Solaris 2.x, use the "-D_REENTRANT -ledt -lthread" options to compile and
link the library file libedt.a with your program. See the makefile and example programs
provided for examples of compiling programs using the library routines.

DMA Library Routines
The DMA library provides a set of consistent routines across many of the EDT products, with
simple yet powerful ring-buffered DMA capabilities. Table 1, DMA Library Routines lists the
general DMA library routines, described in an order corresponding roughly to their general
usefulness.
If driver-specific library routines exist, they can be found in the following section.

Routine Description

Startup/Shutdown

edt_open Opens the EDT Product for application access.
edt_open_channel Opens a specific channel on the EDT Product for application access.
edt_close Terminates access to the EDT Product and releases resources.
edt_parse_unit Parses an EDT device name string.

Input/Output

edt_read Single, application-level buffer read from the EDT Product.
edt_write Single, application-level buffer write to the EDT Product.
edt_start_buffers Begins DMA transfer from or to specified number of buffers.
edt_stop_buffers Stops DMA transfer after the current buffer(s) complete(s).
edt_check_for_buffers Checks whether the specified number of buffers have completed

without blocking.
edt_done_count Returns absolute (cumulative) number of completed buffers.
edt_get_todo Gets the number of buffers that the driver has been told to acquire.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 15

Routine Description
edt_wait_for_buffers Blocks until the specified number of buffers have completed.
edt_wait_for_next_buffer Waits for the next buffer that completes DMA.
edt_wait_buffers_timed Blocks until the specified number of buffers have completed; returns

a pointer to the time that the last buffer finished.
edt_next_writebuf Returns a pointer to the next buffer scheduled for output DMA.
edt_set_buffer Sets which buffer should be started next.
edt_set_buffer_size Used to change the size or direction of one of the ring buffers.
edt_last_buffer Waits for the last buffer that has been transferred.
edt_last_buffer_timed Like edt_last_buffer but also returns the time at which the dma was

complete on this buffer.
edt_configure_ring_buffers Configures the ring buffers.
edt_buffer_addresses Returns an array of addresses referencing the ring buffers.
edt_disable_ring_buffers Stops DMA transfer, disables ring buffers and releases resources.
edt_ring_buffer_overrun Detects ring buffer overrun which may have corrupted data.
edt_reset_ring_buffers Stops DMA in progress and resets the ring buffers.
edt_configure_block_buffers Configures ring buffers using a contiguous block of memory.
edt_startdma_action Specifies when to perform the action at the start of a dma transfer as

set by edt_startdma_reg().
edt_enddma_action Specifies when to perform the action at the end of a dma transfer as

set by edt_ednddma_reg().
edt_startdma_reg Specifies the register and value to use at the start of dma, as set by

edt_startdma_action().
edt_abort_dma Cancels the current DMA, resets pointers to the current buffer.
edt_ablort_current_dma Cancels the current DMA, moves pointers to the next buffer.
edt_get_bytecount Returns the number of bytes transferred.
edt_timeouts Returns the cumulative number of timeouts since the device was

opened.
edt_get_timeout_count Returns the number of bytes transferred as of the last timeout.
edt_set_timeout_action Sets the driver behavior on a timeout.
edt_get_timeout_goodbits Returns the number of bits from the remote device since the last

timeout.
edt_do_timeout Causes the driver to perform the same actions as it would on a

timeout (causing partially filled fifos to be flushed and dma to be
aborted).

edt_get_rtimeout Gets the DMA read timeout period.
edt_set_rtimeout Sets how long to wait for a DMA read to complete, before returning.
edt_get_wtimeout Gets the DMA write timeout period.
edt_set_wtimeout Sets how long to wait for a DMA write to complete, before returning.
edt_get_timestamp Gets the seconds and microseconds timestamp of dma completion

on the buffer specified by bufnum.
edt_get_reftime Gets the seconds and mircroseconds timestamp in the same format

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 16

Routine Description
as the buffer_timed function.

edt_ref_tmstamp Used for debugging. Able to see a history with setdebug -g with
an application defined event in the same timeline as driver events.

edt_get_burst_enable Returns a value indicating whether PCI Bus burst transfers are
enabled during DMA.

edt_set_burst_enable Turns on or off PCI Bus burst transfers during DMA.
edt_get_firstflush Returns the value set by edt_set_firstflush(). This is an obsolete

function.
edt_set_firstflush Tells whether and when to flush FIFOs before DMA.
edt_flush_fifo Flushes the EDT Product FIFOs.
edt_get_goodbits Returns the number of bits from the remote device.

Control

edt_set_event_func Defines a function to call when an event occurs.
edt_remove_event_func Removes a previously set event function.
edt_reg_read Reads the contents of the specified EDT Product register.
edt_reg_write Writes a value to the specified EDT Product register.
edt_reg_and ANDs the value provided with the value of the specified EDT

Product register.
edt_reg_or ORs the value provided with the value of the specified EDT Product

register.
edt_get_foicount Returns the number of RCI modules connected to the EDT FOI

(fiber optic interface) board.
edt_set_foiunit Sets which RCI unit to address with subsequent serial and register

read/write functions.
edt_intfc_write A convenience routine, partly for backward compatability, to access

the XILINX interface registers.
edt_intfc_write_short A convenience routine, partly for backward compatability, to access

the XILINX interface registers.
edt_intfc_write_32 A convenience routine, partly for backward compatability, to access

the XILINX interface registers.

Utility

edt_msleep Sleeps for the specified number of microseconds.
edt_alloc Allocate page-aligned memory in a system-independent way.
edt_free ree the memory allocated with edt_alloc.
edt_perror Prints a system error message in case of error.
edt_errno Returns an operating system-dependent error number.
edt_access Determines file access independent of operating system.
edt_get_bitpath Obtains pathname to the currently loaded interface bitfile from the

driver.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 17

edt_open
Description

Opens the specified EDT Product and sets up the device handle.
Syntax

#include "edtinc.h"

EdtDev *edt_open(char *devname, int unit) ;

Arguments
devname a string with the name of the EDT Product board. For example, “edt”.
unit specifies the device unit number

Return
A handle of type (EdtDev *), or NULL if error. (The
structure(EdtDev *) is defined in libedt.h.) If an error occurs, check
the errno global variable for the error number. The device name for
the EDT Product is “edt”. Once opened, the device handle may be
used to perform I/O using edt_read(), edt_write(),
edt_configure_ring_buffers(), and other input-output library calls.

edt_open_channel
Description

Opens a specific DMA channel on the specified EDT Product, when
multiple channels are supported by the Xilinx firmware, and sets up
the device handle. Use edt_close() to close the channel.

Syntax
#include "edtinc.h"

EdtDev *edt_open_channel(char *devname, int unit, int channel) ;

Arguments
devname a string with the name of the EDT Product board. For example, “edt”.
unit specifies the device unit number

channel specifies the DMA channel number counting from zero

Return
A handle of type (EdtDev *), or NULL if error. (The
structure(EdtDev *) is defined in libedt.h.) If an error occurs, check
the errno global variable for the error number. The device name for
the EDT Product is “edt”. Once opened, the device handle may be
used to perform I/O using edt_read(), edt_write(),
edt_configure_ring_buffers(), and other input-output library calls.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 18

edt_close
Description

Shuts down all pending I/O operations, closes the device or channel
and frees all driver resources associated with the device handle.

Syntax
#include "edtinc.h"

int edt_close(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Return
0 on success; –1 on error. If an error occurs, call edt_perror()
to get the system error message.

edt_parse_unit
Description

Parses an EDT device name string. Fills in the name of the device,
with the default_device if specified, or a default determined by the
package, and returns a unit number. Designed to facilitate a flexible
device/unit command line argument scheme for application
programs. Most EDT example/utility programs use this susubroutine
to allow users to specify either a unit number alone or a device/unit
number concatenation.
For example, if you are using a PCI CD, then either xtest -u 0 or
xtest -u pcd0 could both be used, since xtest sends the argument to
edt_parse_unit, and the subroutine parses the string to returns the
device and unit number separately.

Syntax
int edt_parse_unit(char *str, char *dev, char *default_dev)

Arguments
str device name string. Should be either a unit number (“0” - “8”) or device/unit

concantenation (“pcd0,” “pcd1,” etc.)

dev device string, filled in by the routine. For example, “pcd.”

default_dev device name to use if none is given in the str argument. If NULL, will be filled in by
the default device for the package in use. For example, if the code base is from a PCI
CD package, the default_dev will be set to “pcd.”

Return
Unit number or -1 on error. The first device is unit 0.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 19

See Also
example/utility programs xtest.c, initcam.c, take.c

edt_read
Description

Performs a read on the EDT Product. For those on UNIX systems,
the UNIX 2 GB file offset bug is avoided during large amounts of
input or output, that is, reading past 231 bytes does not fail. This call
is not multibuffering, and no transfer is active when it completes.

Syntax
#include "edtinc.h"

int edt_read(EdtDev *edt_p, void *buf, int size);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

buf address of buffer to read into

size size of read in bytes

Return
The return value from read, normally the number of bytes read; –1 is
returned in case of error. Call edt_perror() to get the system error
message.

Note If using timeouts, call edt_timeouts after edt_read returns to see if the number of
timeouts has incremented. If it has incremented, call edt_get_timeout_count to get
the number of bytes transferred into the buffer. DMA does not automatically continue
on to the next buffer, so you need to call edt_start_buffers to move on to the next
buffer in the ring.

edt_write
Description

Perform a write on the EDT Product. For those on UNIX systems,
the UNIX 2 GB file offset bug is avoided during large amounts of
input or output; that is, writing past 231 does not fail. This call is not
multibuffering, and no transfer is active when it completes.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 20

Syntax
#include "edtinc.h"

int edt_write(EdtDev *edt_p, void *buf, int size);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

buf address of buffer to write from

size size of write in bytes

Return
The return value from write; –1 is returned in case of error. Call
edt_perror() to get the system error message.

Note If using timeouts, call edt_timeouts after edt_write returns to see if the number of
timeouts has incremented. If it has incremented, call edt_get_timeout_count to get
the number of bytes transferred into the buffer. DMA does not automatically continue
on to the next buffer, so you need to call edt_start_buffers to move on to the next
buffer in the ring.

edt_start_buffers
Description

Starts DMA to the specified number of buffers. If you supply a
number greater than the number of buffers set up, DMA continues
looping through the buffers until the total count has been satisfied.

Syntax
#include "edtinc.h"

int edt_start_buffers(EdtDev *edt_p, int bufnum);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

bufnum Number of buffers to release to the driver for transfer. An argument of 0
puts the driver in free running mode, and transfers run continuously
until edt_stop_buffers() is called.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get
the system error message.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 21

edt_stop_buffers
Description

Stops DMA transfer after the current buffer has completed. Ring
buffer mode remains active, and transfers will be continued by
calling edt_start_buffers().

Syntax
#include "edtinc.h"

int edt_stop_buffers(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get
the system error message.

edt_check_for_buffers
Description

Checks whether the specified number of buffers have completed
without blocking.

Syntax
#include "edtinc.h"

void *edt_check_for_buffers(EdtDev *edt_p, int count);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

count number of buffers. Must be 1 or greater. Four is recommended.

Return
Returns the address of the ring buffer corresponding to count if it
has completed DMA, or NULL if count buffers are not yet
complete.

Note If the ring buffer is in free-running mode and the application cannot process data as
fast as it is acquired, DMA will wrap around and overwrite the referenced buffer.
The application must ensure that the data in the buffer is processed or copied out in
time to prevent overrun.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 22

edt_done_count
Description

Returns the cumulative count of completed buffer transfers in ring
buffer mode.

Syntax
#include "edtinc.h"

int edt_done_count(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Return
The number of completed buffer transfers. Completed buffers are
numbered consecutively starting with 0 when
edt_configure_ring_buffers() is invoked. The index of the ring
buffer most recently completed by the driver equals the number
returned modulo the number of ring buffers. –1 is returned if ring
buffer mode is not configured. If an error occurs, call edt_perror() to
get the system error message.

edt_get_todo
Description

Gets the number of buffers that the driver has been told to acquire.
This allows an application to know the state of the ring buffers
within an interrupt, timeout, or when cleaning up on close. It also
allows the application to know how close it is getting behind the
acquisition. It is not normally needed.

Syntax
uint_t edt_get_todo(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Example
int curdone;

int curtodo;

curdone=edt_done_count(pdv_p);

curtodo=edt_get_todo(pdv_p);

/* curtodo--curdone how close the dma is to catching with our
processing */

Return
Number of buffers started via edt_start_buffers.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 23

See Also
edt_done_count(), edt_start_buffers(), edt_wait_for_buffers()

edt_wait_for_buffers
Description

Blocks until the specified number of buffers have completed.
Syntax

#include "edtinc.h"

void *edt_wait_buffers(EdtDev *edt_p, int count);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

count How many buffers to block for. Completed buffers are numbered relatively;
start each call with 1.

Return
Address of last completed buffer on success; NULL on error. If an
error occurs, call edt_perror() to get the system error message.

Note If using timeouts, call edt_timeouts after edt_wait_for_buffers returns to see if the
number of timeouts has incremented. If it has incremented, call
edt_get_timeout_count to get the number of bytes transferred into the buffer. DMA
does not automatically continue on to the next buffer, so you need to call
edt_start_buffers to move on to the next buffer in the ring.

Note If the ring buffer is in free-running mode and the application cannot process data as
fast as it is acquired, DMA will wrap around and overwrite the referenced buffer. The
application must ensure that the data in the buffer is processed or copied out in time
to prevent overrun.

For an example of real-time data capture using ring buffers, see the example on
page XX.

See Also
edt_set_rtimeout, edt_set_wtimeout

edt_wait_for_next_buffer
Description

Waits for the next buffer that finishes DMA. Depending on how often this routine is
called, buffers that have already completed DMA might be skipped.
Syntax

#include "edtinc.h"

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 24

void *edt_wait_for_next_buffer(EdtDev *edt_p) ;
Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Return
Returns a pointer to the buffer, or NULL on failure. If an error
occurs, call edt_perror() to get the system error message.

edt_wait_buffers_timed
Description

Blocks until the specified number of buffers have completed with a
pointer to the time the last buffer finished.

Syntax
#include "edtinc.h"

void *edt_wait_buffers_timed (EdtDev *edt_p, int count, uint
*timep);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

count buffer number for which to block. Completed buffers are numbered
cumulatively starting with 0 when the EDT Product is opened.

timep pointer to an array of two unsigned integers. The first integer is seconds, the
next integer is microseconds representing the system time at which the buffer
completed.

Return
Address of last completed buffer on success; NULL on error. If an
error occurs, call edt_perror() to get the system error message.

Note If the ring buffer is in free-running mode and the application cannot process data as
fast as it is acquired, DMA will wrap around and overwrite the referenced buffer .
The application must ensure that the data in the buffer is processed or copied out in
time to prevent overrun.

edt_next_writebuf
Description

Returns a pointer to the next buffer scheduled for output DMA, in
order to fill the buffer with data.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 25

Syntax
#include "edtinc.h"

void *edt_next_writebuf(EdtDev *edt_p) ;

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Return
Returns a pointer to the buffer, or NULL on failure. If an error
occurs, call edt_perror() to get the system error message.

edt_set_buffer
Description

Sets which buffer should be started next. Usually done to recover
after a timeout, interrupt, or error.

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Syntax
#include "edtinc.h"

void *edt_next_writebuf(EdtDev *edt_p) ;

Example
u_int curdone;

edt_stop_buffers(edt_p);

curdone=edt_done_count(edt_p);

edt_set_buffer(edt_p, 0);

Return
0 on success, -1 on failure.

See Also
edt_stop_buffers(), edt_done_count(), edt_get_todo()

edt_set_buffer_size
Description

Used to change the size or direction of one of the ring buffers.
Almost never used. Mixing directions requires detailed knowledge
of the interface since pending preloaded DMA transfers need to be
coordinated with the interface fifo direction. For example, a dma
write will complete when the data is in the output fifo, but the dma
read should not be started until the data is out to the external device.
Most applications requiring fast mixed reads/writes have worked out

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 26

more cleanly using seperate, simultaneous, read and write dma
transfers using different dma channels.

Arguments
edt_p device handle returned from edt_open or edt_open_channel

which_buf index of ring buffer to change

size size to change it to

write_flag direction

Syntax
int edt_set_buffer_size(EdtDev *edt_p, unsigned int which_buf,
unsigned int size, unsigned int write_flag)

Example
u_int bufnum=3;

u_int bsize=1024;

u_int dirflag=EDT_WRITE;

int ret;

ret=edt_set_buffer_size(edt_p, bufnum, bsize, dirflag);

Return
0 on success, -1 on failure.

See Also
edt_open_channel(), redpcd8.c, rd16.c, rdssdio.c, wrssdio.c

edt_last_buffer
Description

Waits for the last buffer that has been transferred. This is useful if
the application cannot keep up with buffer transfer. If this routine is
called for a second time before another buffer has been transferred,
it will block waiting for the next transfer to complete.

Arguments
edt_p device struct returned from edt_open

nSkipped pointer to an integer which will be filled in with number of buffers skipped, if
any.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 27

Syntax
unsigned char *edt_last_buffer(EdtDev *edt_p, int *nSkipped)

Example
int skipped_bufs;

u_char *buf;

buf=edt_last_buffer(edt_p, &skipped_bufs);

Return
Address of the image.

See Also
edt_wait_for_buffers, edt_last_buffer_timed

edt_last_buffer_timed
Description

Like edt_last_buffer but also returns the time at which the dma was
complete on this buffer. “timep” should point to an array of
unsigned integers which will be filled in with the seconds and
microseconds of the time the buffer was finished being transferred.

Arguments
edt_p device struct returned from edt_open

timep pointer to an unsigned integer array

Syntax
unsigned char *edt_last_buffer_timed(EdtDev *edt_p, u_int
*timep)

Example
u_int timestamp [2];

u_char *buf;

buf=edt_last_buffer_timed(edt_p, timestamp);

Return
Address of the image.

See Also
edt_wait_for_buffers(), edt_last_buffer(), edt_wait_buffers_timed

edt_configure_ring_buffers
Description

Configures the EDT device ring buffers. Any previous configuration
is replaced, and previously allocated buffers are released. Buffers
can be allocated and maintained within the EDT device library or
within the user application itself.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 28

Syntax
#include "edtinc.h"

int edt_configure_ring_buffers(EdtDev *edt_p, int bufsize, int
nbufs,
 int data_output, void *bufarray[]);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

bufsize size of each buffer. For optimal efficiency, allocate a value approximating
throughput divided by 20: that is, if transfer occurs at 20 MB per second,
allocate 1 MB per buffer. Buffers significantly larger or smaller can overuse
memory or lock the system up in processing interrupts at this speed.

nbufs number of buffers. Must be 1 or greater. Four is recommended for most
applications.

data_direction Indicates whether this connection is to be used for input or output. Only one
direction is possible per device or subdevice at any given time:

EDT_READ = 0

EDT_WRITE = 1

bufarray If NULL, the library will allocate a set of page-aligned ring buffers. If not
NULL, this argument is an array of pointers to application-allocated buffers;
these buffers must match the size and number of buffers specified in this call
and will be used as the ring buffers.

Return
0 on success; –1 on error. If all buffers cannot be allocated, none are
allocated and an error is returned. Call edt_perror() to get the system
error message.

edt_buffer_addresses
Description

Returns an array containing the addresses of the ring buffers.
Syntax

#include "edtinc.h"

void **edt_buffer_addresses(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Return
An array of pointers to the ring buffers allocated by the driver or the
library. The array is indexed from zero to n-1 where n is the number
of ring buffers set in edt_configure_ring_buffers().

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 29

edt_disable_ring_buffers
Description

Disables the EDT device ring buffers. Pending DMA is cancelled
and all buffers are released.

Syntax
#include "edtinc.h"

int edt_disable_ring_buffers(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get
the system error message.

edt_ring_buffer_overrun
Description

Returns true (1) when DMA has wrapped around the ring buffer and
overwritten the buffer which the application is about to access.
Returns false (0) otherwise.

Syntax
#include "edtinc.h"

int edt_ring_buffer_overrun(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Return
1 (true) when overrun has occurred, corrupting the current buffer, 0
(false) otherwise.
0 on success; –1 on error. If an error occurs, call edt_perror() to get
the system error message.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 30

edt_reset_ring_buffers
Description

Stops any DMA currently in progress, then resets the ring buffer to
start the next DMA at bufnum.

Syntax
#include "edtinc.h"

int edt_reset_ring_buffers(EdtDev *edt_p, int bufnum) ;

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

bufnum The index of the ring buffer at which to start the next DMA. A number larger
than the number of buffers set up sets the current done count to the number
suppliedmodulo the number of buffers.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get
the system error message.

edt_configure_block_buffers
Description

Similar to edt_configure_ring_buffers, except that it allocates the
ring buffers as a single large block, setting the ring buffer addresses
from within that block. This allows reading or writing buffers
from/to a file in single chunks larger than the buffer size, which is
sometimes considerable more efficient. Buffer sizes are rounded up
by PAGE_SIZE so that DMA occurs on a page boundary.

Syntax
int edt_configure_block_buffers(EdtDev 8edt_p, int bufsize, int
numbufs, int write_flag, int header_size, int header_before)

Arguments
edt_p device struct returned from edt_open

bufsize size of the individual buffers

numbufs number of buffers to create

write_flag 1, if these buffers are set up to go out; 0 otherwise

header_size if non-zero, additional memory (header_size bytes) will be allocated for each
buffer for Header data. The loocation of this header space is determined by
the argument header_before.

header_before if non-zero, the header space defined by header_size is placed before the
DMA buffer; otherwise, it comes after the DMA buffer. The value returned by
edt_wait_for_buffers is always the DMA buffer.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 31

Return
0 on success, -1 on failure.

See Also
edt_configure_ring_buffers

edt_startdma_action
Description

Specifies when to perform the action at the start of a dma transfer as
specified by edt_startdma_reg(). A common use of this is to write to
a register which signals an external device that dma has started, to
trigger the device to start sending. The default is no dma action. The
PDV library uses this function to send a trigger to a camera a the
start of dma. This function allows the register write to occur in a
critical section with the start of dma and at the same time.

Syntax
void edt_startdma_action(EdtDev *edt_p, uint_t val);

Arguments
edt_p device struct returned from edt_open

val One of EDT_ACT_NEVER, EDT_ACT_ONCE, or EDT_ACT_ALWAYS

Example
edt_startdma_action(edt_p, EDT_ACT_ALWAYS);

edt_startdma_reg(edt_p, PDV_CMD, PDV_ENABLE_GRAB);

Return
void

See Also
edt_startdma_reg(), edt_reg_write(), edt_reg_read()

edt_enddma_action
Description

Specifies when to perform the action at the end of a dma transfer as
specified by edt_enddma_reg(). A common use of this is to write to
a register which signals an external device that dma is complete, or
to change the state of a signal which will be changed at the start of
dma, so the external device can look for an edge. The default is no
end of dma action. Most applications can set the output signal, if
needed, from the application with edt_reg_write(). This routine is
only needed if the action must happen within microseconds of the
end of dma.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 32

Syntax
void edt_enddma_action(EdtDev *edt_p, uint_t val);

Arguments
edt_p device struct returned from edt_open

val One of EDT_ACT_NEVER, EDT_ACT_ONCE, or EDT_ACT_ALWAYS

Example
u_int fnct_value=0x1;

edt_enddma_action(edt_p, EDT_ACT_ALWAYS);

edt_enddma_reg(edt_p, PCD_FUNCT, fnct_value);

Return
void

See Also
edt_startdma_action(), edt_startdma_reg(), edt_reg_write(),
edt_reg_read()

edt_startdma_reg
Description

Sets the register and value to use at the start of dma, as set by
edt_startdma_action().

Syntax
void edt_startdma_reg(EdtDev *edt_p, uint_t desc, uint_t val);

Arguments
edt_p device struct returned from edt_open

desc register description of which register to use as in edtreg.h

val value to write

Example
edt_startdma_action(edt_p, EDT_ACT_ALWAYS);

edt_startdma_reg(edt_p, PDV_CMD, PDV_ENABLE_GRAB);

Return
void

See Also
edt_startdma_action()

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 33

edt_abort_dma
Description

Stops any transfers currently in progress, resets the ring buffer
pointers to restart on the current buffer.

Syntax
#include "edtinc.h"

int edt_abort_dma(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get
the system error message.

edt_abort_current_dma
Description

Stops the current transfers, resets the ring buffer pointers to the next
buffer.

Syntax
#include "edtinc.h"

int edt_abort_current_dma(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Return
0 on success, -1 on failure

edt_get_bytecount
Description

Returns the number of bytes transferred since the last call of
edt_open, accurate to the burst size, if burst is enabled.

Syntax
#include "edtinc.h"

int edt_get_bytecount(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
The number of bytes transferred, as described above.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 34

edt_timeouts
Description

Returns the number of read and write timeouts that have occurred
since the last call of edt_open.

Syntax
#include "edtinc.h"

int edt_timeouts(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
The number of read and write timeouts that have occurred since the
last call of edt_open.

edt_get_timeout_count
Description

Returns the number of bytes transferred at last timeout.
Syntax

#include "edtinc.h"

int edt_get_timeout_count(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
The number of bytes transferred at last timeout.

edt_set_timeout_action
Description

Sets the driver behavior on a timeout.
Syntax

#include "edtinc.h"

void edt_set_timeout_action(EdtDev *edt_p, int action);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

integer configures the any action taken on a timeout. Definitions:

EDT_TIMEOUT_NULL no extra action taken

action

EDT_TIMEOUT_BIT_STROBE flush any valid bits left in input circuits of
SSDIO.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 35

Return
No return value.

edt_get_timeout_goodbits
Description

Returns the number of good bits in the last long word of a read
buffer after the last timeout. This routine is called after a timeout, if
the timeout action is set to EDT_TIMEOUT_BIT_STROBE. (See
edt_set_timeout_action on page Error! Bookmark not defined..)

Syntax
#include "edtinc.h"

int edt_get_timeout_goodbits(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
Number 0–31 represents the number of good bits in the last 32-bit
word of the read buffer associated with the last timeout.

edt_do_timeout
Description

Causes the driver to perform the same actions as it would on a
timeout (causing partially filled fifos to be flushed and dma to be
aborted). Used when the application has knowledge that no more
data will be sent/accepted. Used when a common timeout cannot be
known, such as when acquiring data from a telescope ccd array
where the amount of data sent depends on unknown future celestial
events. Also used by the library when the operating system can not
otherwise wait for an interrupt and timeout at the same time.

Syntax
int edt_do_timeout(EdtDev *edt_p)

Arguments
edt_p device struct returned from edt_open

Example
edt_do_timeout(edt_p);

Return
0 on success, -1 on failure

See Also
ring buffer discussion

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 36

edt_get_rtimeout
Description

Gets the current read timeout value: the number of milliseconds to
wait for DMA reads to complete before returning.

Syntax
#include "edtinc.h"

int edt_get_rtimeout(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
The number of milliseconds in the current read timeout period.

edt_set_rtimeout
Description

Sets the number of milliseconds for data read calls, such as
edt_read(), to wait for DMA to complete before returning. A value
of 0 causes the I/O operation to wait forever—that is, to block on a
read. Edt_set_rtimeout affects edt_wait_for_buffers (see page XX)
and edt_read (see page XX).

Syntax
#include "edtinc.h"

int edt_set_rtimeout(EdtDev *edt_p, int value);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

value The number of milliseconds in the timeout period.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get
the system error message.

edt_get_wtimeout
Description

Gets the current write timeout value: the number of milliseconds to
wait for DMA writes to complete before returning.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 37

Syntax
#include "edtinc.h"

int edt_get_wtimeout(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
The number of milliseconds in the current write timeout period.

edt_set_wtimeout
Description

Sets the number of milliseconds for data write calls, such as
edt_write(), to wait for DMA to complete before returning. A value
of 0 causes the I/O operation to wait forever—that is, to block on a
write. Edt_set_wtimeout affects edt_wait_for_buffers (see page XX)
and edt_write (see page XX).

Syntax
#include "edtinc.h"

int edt_set_wtimeout(EdtDev *edt_p, int value);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

value The number of milliseconds in the timeout period.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get
the system error message.

edt_get_timestamp
Description

Gets the seconds and microseconds timestamp of when dma was
completed on the buffer specified by bufnum. “bufnum” is moded
by the number of buffers in the ring buffer, so it can either be an
index, or the number of buffers completed.

Syntax
int edt_get_timestamp(EdtDev *edt_p, u_int *timep, u_int bufnum)

Arguments
edt_p device struct returned from edt_open

timep pointer to an unsigned integer array

bufnum buffer index, or number of buffers completed

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 38

Example
int timestamp[2];

u_int bufnum=edt_done_count(edt_p);

edt_get_timestamp(edt_p, timestamp, bufnum);

Return
0 on success, -1 on failure. Fills in timestamp pointed to by timep.

See Also
edt_timestamp(), edt_done_count(), edt_wait_buffers_timed

edt_get_reftime
Description

Gets the seconds and microseconds timestamp in the same format as
the buffer_timed functions. Used for debugging and coordinating
dma completion time with other events.

Syntax
int edt_get_reftime(EdtDev *edt_p, u_int *timep)

Arguments
edt_p device struct returned from edt_open

timep pointer to an unsigned integer array

bufnum buffer index, or number of buffers completed

Example
int timestamp[2];

edt_get_regtime(edt_p, timestamp);

Return
0 on success, -1 on failure. Fills in timestamp pointed to by timep.

See Also
edt_timestamp(), edt_done_count(), edt_wait_buffers_timed

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 39

edt_ref_tmstamp
Description

Used for debugging and viewing a history with setdebug -g with an
application-defined event in the same timeline as driver events.

Syntax
int edt_ref_tmstamp(EdtDev *edt_p, u_int val)

Arguments
edt_p device struct returned from edt_open

val an arbitrary value meaningful to the application

Example
#define BEFORE_WAIT 0x11212aaaa

#define AFTER_WAIT 0x3344bbbb

u_char *buf;

edt_ref_tmstamp(edt_p, BEFORE_WAIT);

buf=edt_wait_for_buffer(edt_p);

edt_reg_tmstamp(edt_p, AFTER_WAIT);

/* now look at output of setdebug -g */

Return
0 on success, -1 on failure.

See Also
documentation on setdebug

edt_get_burst_enable
Description

Returns the value of the burst enable flag, determining whether the
DMA master transfers as many words as possible at once, or
transfers them one at a time as soon as the data is acquired. Burst
transfers are enabled by default to optimize use of the bus. For more
information, see Code Fontparatextefault ¶ Fonton page Error!
Bookmark not defined..
Syntax
#include "edtinc.h"

int edt_get_burst_enable(EdtDev *edt_p);
Arguments

edt_p device handle returned from edt_open or edt_open_channel

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 40

Return
A value of 1 if burst transfers are enabled; 0 otherwise.

edt_set_burst_enable
Description

Sets the burst enable flag, determining whether the DMA master
transfers as many words as possible at once, or transfers them one at
a time as soon as the data is acquired. Burst transfers are enabled by
default to optimize use of the bus; however, you may wish to disable
them if data latency is an issue, or for diagnosing DMA problems.

Syntax
#include "edtinc.h"

void edt_set_burst_enable(EdtDev *edt_p, int onoff);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

onoff A value of 1 turns the flag on (the default); 0 turns it off.

Return
No return value.

edt_get_firstflush
Description

Returns the value set by edt_set_firstflush(). This is an obsolete
function that was only used as a kludge to detect EDT_ACT_KBS
(also obsolete).

Syntax
int edt_get_firstflush(EdtDev *edt_p)

Arguments
edt_p device struct returned from edt_open.

Example
int application_should_already_know_this;

application_should_already_know_this=edt_get_firstflush(edt_p);

Return
Yes

See Also
edt_set_firstflush

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 41

edt_set_firstflush
Description

Tells whether and when to flush the FIFOs before DMA transfer. By
default, the FIFOs are not flushed. However, certain applications
may require flushing before a given DMA transfer, or before each
transfer.

Syntax
#include "edtinc.h"

int *edt_set_firstflush(EdtDev *edt_p, int flag) ;

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

flag Tells whether and when to flush the FIFOs. Valid values are:

EDT_ACT_NEVER don’t flush before DMA transfer (default)

EDT_ACT_ONCE flush before the start of the next DMA transfer

EDT_ACT_ALWAYS flush before the start of every DMA transfer

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get
the system error message.

edt_flush_fifo
Description

Flushes the board’s input and output FIFOs, to allow new data
transfers to start from a known state.

Syntax
#include "edtinc.h"

void edt_flush_fifo(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
No return value.

edt_get_goodbits
Description

Returns the current number of good bits in the last long word of a
read buffer (0 through 31).

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 42

Syntax
#include "edtinc.h"

int edt_get_goodbits(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
Number 0–31 represents the number of good bits in the 32-bit word
of the current read buffer.

edt_set_event_func
Description

Defines a function to call when an event occurs. Use this routine to
send an application-specific function when required; for example,
when DMA completes, allowing the application to continue
executing until the event of interest occurs.
If you wish to receive notification of one event only, and then
disable further event notification, send a final argument of 0 (see the
continue parameter described below). This disables event
notification at the time of the callback to your function.

Syntax
#include "edtinc.h"

int edt_set_event_func(EdtDev *edt_p, int event, void
(*func)(void *),
 void *data, int continue);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

The event that causes the function to be called. Valid events are:

Event Description Board

EDT_PDV_EVENT_ACQUIRE Image has been acquired; shutter
has closed; subject can be moved
if necessary; DMA will now
restart

PCI
DV,
PCI
DVK,
PCI
FOI

EDT_PDV_EVENT_FVAL Frame Valid line is set PCI
DV,
PCI
DVK

event

EDT_EVENT_P16D_DINT Device interrupt occurred PCI
16D

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 43

EDT_EVENT_P11W_ATTN Attention interrupt occurred PCI
11W

EDT_EVENT_P11W_CNT Count interrupt occurred PCI
11W

EDT_EVENT_PCD_STAT1 Interrupt occurred on Status 1 line PCI
CD

EDT_EVENT_PCD_STAT2 Interrupt occurred on Status 2 line PCI
CD

EDT_EVENT_PCD_STAT3 Interrupt occurred on Status 3 line PCI
CD

EDT_EVENT_PCD_STAT4 Interrupt occurred on Status 4 line PCI
CD

EDT_EVENT_ENDDMA DMA has completed ALL

func The function you’ve defined to call when the event occurs.

data Pointer to data block (if any) to send to the function as an argument; usually
edt_p.

continue Flag to enable or disable continued event notification. A value of 0 causes an
implied edt_remove_event_func as the event is triggered.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get
the system error message.

edt_remove_event_func
Description

Removes an event function previously set with edt_set_event_func.

Note This routine is implemented on PCI Bus platforms only.

Syntax
#include "edtinc.h"

int edt_remove_event_func(EdtDev *edt_p, int event);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

event The event that causes the function to be called. Valid events are as listed in
Code Fontparatextefault ¶ Fonton page Error! Bookmark not defined..

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get
the system error message.
edt_reg_read

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 44

Description
Reads the specified register and returns its value. Use this routine
instead of using ioctls.

Syntax
#include "edtinc.h"

uint edt_reg_read(EdtDev *edt_p, uint address);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

address The name of the register to read. Use the names provided in the register
descriptions in the section entitled “Hardware.”

Return
The value of the register.

edt_reg_write

Note Use this routine with care; it writes directly to the hardware. An
incorrect value can crash your system, possibly causing loss of data.

Description
Write the specified value to the specified register. Use this routine
instead of using ioctls.

Syntax
#include "edtinc.h"

void edt_reg_write(EdtDev *edt_p, uint address, uint value);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

address The name of the register to write. Use the names provided in the register
descriptions in the section entitled “Hardware.”

value The desired value to write in the register.

Return
No return value.

edt_reg_and

Note Use this routine with care; it writes directly to the hardware. An
incorrect value can crash your system, possibly causing loss of data.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 45

Description
Performs a bitwise logical AND of the value of the specified register
and the value provided in the argument; the result becomes the new
value of the register. Use this routine instead of using ioctls.

Syntax
#include "edtinc.h"

uint edt_reg_and(EdtDev *edt_p, uint address, uint mask);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

address The name of the register to modify. Use the names provided in the register
descriptions in the section entitled “Hardware.”

mask The value to AND with the register.

Return
The new value of the register.

edt_reg_or

Note Use this routine with care; it writes directly to the hardware. An
incorrect value can crash your system, possibly causing loss of data.

Description
Performs a bitwise logical OR of the value of the specified register
and the value provided in the argument; the result becomes the new
value of the register. Use this routine instead of using ioctls.

Syntax
#include "edtinc.h"

uint edt_reg_or(EdtDev *edt_p, uint address, uint mask);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

address The name of the register to modify. Use the names provided in the register
descriptions in the section entitled “Hardware.”

mask The value to OR with the register.

Return
The new value of the register.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 46

edt_get_foicount
Description

Returns the number of RCI modules connected to the EDT FOI
(fiber optic interface) board.

Syntax
int edt_get_foicount(EdtDev *edt_p)

Arguments
edt_p device struct returned from edt_open

Example
int num-rcis;

num_rcia=edt_get_foicount(edt_p);

Return
Integer

See Also
edt_set_foiunit(), edt_get_foiunit(), edt_set_foicount()

edt_set_foicount
Description

Sets which RCI unit to address with subsequent serial and register
read/write functions. Used with the PDV FOI.

Syntax
int edt_set_foicount(EdtDev *edt_p, int unit)

Arguments
edt_p device struct returned from edt_open

unit unit number of RCI unit

Example
int nextunit;

nextunit=3;

edt_set_foiunit(edt_p, nextunit);

Return
0 on success, -1 on failure

See Also
pdv_serial_write(), edt_reg_write(), edt_reg_read(),
pdv_serial_read()

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 47

edt_intfc_write
Description

A convenience routine, partly for backward compatability, to access
the XILINX interface registers. The register descriptors used be
edt_reg_write() can also be used, since edt_intfc_write masks off the
offset.

Syntax
void edt_intfc_write(EdtDev *edt_p, uint_t offset, uchar_t val)

Arguments
edt_p device struct returned from edt_open

offset integer offset into XILINX interface, or register descriptor

val unsigned character value to set

Example
u_char fnct1=1;

edt_intfc_write(edt_p, PCD_FUNCT, fnct1);

Return
void

See Also
edt_intfc_read(), edt_reg_write(), edt_intfc_write_short()

edt_intfc_read
Description

A convenience routine, partly for backward compatability, to access
the XILINX interface registers. The register descriptors used be
edt_reg_write() can also be used, since edt_intfc_read masks off the
offset.

Syntax
u_char

edt_intfc_read(EdtDev *edt_p, uint_t offset)

Arguments
edt_p device struct returned from edt_open

offset integer offset into XILINX interface, or register descriptor

val unsigned character value to set

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 48

Example
u_char rfnct=edt_intfc_read(edt_p, PCD_FUNCT);

Return
void

See Also
edt_intfc_write(), edt_reg_read(), edt_intfc_read_short()

edt_intfc_write_short
Description

A convenience routine, partly for backward compatability, to access
the XILINX interface registers. The register descriptors used be
edt_reg_write() can also be used, since edt_intfc_write_short masks
off the offset.

Syntax
void edt_intfc_write_short(EdtDev *edt_p, uint_t offset, u_short
val)

Arguments
edt_p device struct returned from edt_open

offset integer offset into XILINX interface, or register descriptor

val unsigned character value to set

Example
u_short width=1024;

edt_intfc_write_short(edt_p, CAM_WIDTH, width);

Return
void

See Also
edt_intfc_write(), edt_reg_write()

edt_intfc_read_short
Description

A convenience routine, partly for backward compatability, to access
the XILINX interface registers. The register descriptors used be
edt_reg_write() can also be used, since edt_intfc_read_short masks
off the offset.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 49

Syntax
u_short

edt_intfc_read_short(EdtDev *edt_p, unit_t offset)

Arguments
edt_p device struct returned from edt_open

offset integer offset into XILINX interface, or register descriptor

val unsigned character value to set

Example
u_short r_camw=edt_intfc_read_short(edt_p, CAM_WIDTH);

Return
void

See Also
edt_intfc_read(), edt_reg_read()

edt_intfc_write_32
Description

A convenience routine, partly for backward compatability, to access
the XILINX interface registers. The register descriptors used be
edt_reg_write() can also be used, since edt_intfc_write_32 masks off
the offset.

Syntax
void edt_intfc_write_32(EdtDev *edt_p, uint_t offset, unit_t
val)

Arguments
edt_p device struct returned from edt_open

offset integer offset into XILINX interface, or register descriptor

val unsigned character value to set

Example
u_int value=0x12345678;

edt_intfc_write_32(edt_p, MAGIC_OFF1, value);

Return
void

See Also
edt_intfc_read_32(), edt_reg_write()

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 50

edt_intfc_read_32
Description

A convenience routine, partly for backward compatability, to access
the XILINX interface registers. The register descriptors used be
edt_reg_write() can also be used, since edt_intfc_read_32 masks off
the offset.

Syntax
uint_t

edt_intfc_read_32(EdtDev *edt_p, uint_t offset)

Arguments
edt_p device struct returned from edt_open

offset integer offset into XILINX interface, or register descriptor

val unsigned character value to set

Example
u_int r_actkbs=edt_intfc_read_32(edt_p, EDT_ACT_KBS);

Return
void

See Also
edt_intfc_write_32(), edt_reg_read()

edt_msleep
Description

Causes the process to sleep for the specified number of
microseconds.

Syntax
#include "edtinc.h"

int edt_microsleep(u_int usecs) ;

Arguments
usecs The number of microseconds for the process to sleep.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get
the system error message.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 51

edt_alloc
Description

Convenience routine to allocate memory in a system-independent
way. The buffer returned is page aligned. Uses VirtualAlloc on
Windows NT systems, valloc on UNIX-based systems.

Syntax
#include "edtinc.h"

int
edt_alloc(int nbytes)

Arguments
nbytes number of bytes of memory to allocate.

Example
unsigned char *buf = edt_alloc(1024);

Returns
The address of the allocated memory, or NULL on error. If NULL,
use Code Fontparatextefault ¶ Fonton page Error! Bookmark not
defined. to print the error.

edt_free
Description

Convenience routine to free the memory allocated with pdv_alloc
(above).

Syntax
#include "edtinc.h"

int
edt_free(unsigned char *buf)

Arguments
buf Address of memory buffer to free.

Example
edt_free(buf);

Returns
0 if successful, –1 if unsuccessful.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 52

edt_perror
Description

Formats and prints a system error.
Syntax

#include "edtinc.h"

void
edt_perror(char *errstr)

Arguments
errstr Error string to include in the printed error output.

Return
No return value. See Code Fontparatextefault ¶ Font below for
an example.

edt_errno
Description

Returns an operating system-dependent error number.
Syntax

#include "edtinc.h"

int
edt_errno(void)

Arguments
None.

Return
32-bit integer representing the operating system-dependent error
number generated by an error.

Example
if ((edt_p = edt_open("p11w",0))==NULL
{
 int error_num;

 edt_perror("edt_open");
 error_num = edt_errno(edt_p);
}

edt_access
Description

Determines file access, independent of operating system. This a
convenience routine that maps to acccess() on Unix/Linus systems
and _access() on Windows systems.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 53

Syntax
int edt_access(char *fname, int perm)

Arguments
edt_p device struct returned from edt_open

fname path name of the file to check access permissions

perm permission flag(s) to test for. See access() (Unix/Linux) or _access()
(Windows) for valid values.

Example
if(edt_access(“file.ras”, F_OK))

printf(“Warning: overwriting file %s\n”);

Return

0 on success, -1 on failure

edt_get_bitpath
Description

Obtains pathname to the currently loaded interface bitfile from the
driver. The program “bitload” sets this string in the driver when an
interface bitfile is successfully loaded.

Syntax
#include “edtinc.h”

int edt_get_bitpath(EdtDev *edt_p, char *bitpath, int size);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

bitpath address of a character buffer of at least 128 bytes

size number of bytes in the above character buffer

Return
0 on success, -1 on failure

EDT Message Handler Library
The edt error library provides generalized error and message handling for the edt and pdv
libraries. The primary purpose of the routines is to provide a method for application programs
to intercept and handle edtlib and pdvlib error, warning debug messages, but can also be used
for application messages.
By default, output goes to the console (stdout), but user defined functions can be substituted.
For example, a function that pops up a window and displays the text in that window. Different
message levels can be set for different output, and multiple message handles can even exist
within an application, with different message handlers associated with them.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 54

Message Definitions

User application messages
EDTAPP_MSG_FATAL
EDTAPP_MSG_WARNING
EDTAPP_MSG_INFO_1
EDTAPP_MSG_INFO_2
Edtlib messages
EDTLIB_MSG_FATAL
EDTLIB_MSG_WARNING
EDTLIB_MSG_INFO_1
EDTLIB_MSG_INFO_2

Pdvlib messages
PDVLIB_MSG_FATAL
PDVLIB_MSG_WARNING
PDVLIB_MSG_INFO_1
PDVLIB_MSG_INFO_2

Library and application messages
EDT_MSG_FATAL (defined as EDTAPP_MSG_FATAL |
EDTLIB_MSG_FATAL | PDVLIB_MSG_FATAL)
EDT_MSG_WARNING (defined as EDTAPP_MSG_WARNING |
EDTLIB_MSG_WARNING | PDVLIB_MSG_WARNING)
EDT_MSG_INFO_1 (defined as EDTAPP_MSG_INFO_1 |
EDTLIB_MSG_INFO_2 | PDVLIB_MSG_INFO_2)
EDT_MSG_INFO_2 (defined as EDTAPP_MSG_INFO_2 |
EDTLIB_MSG_INFO_2 | PDVLIB_MSG_INFO_2)

Message levels are defined by flag bits, and each bit can be set or
cleared individually. So for example if you want a message handler
to be called for fatal and warning application messages only, you
would specify EDTAPP_MSG_FATAL |
EDTAPP_MSG_WARNING.
As you can see, the edt and pci dv libraries have their own message
flags. These can be turned on and off from within an application,
and also by setting the environment variables EDTDEBUG and
PDVDEBUG, respectively, to values greater than zero.
Application programs would normally specify combinations of
either the EDTAPP_MSG_ or EDT_MSG flags for their messages.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 55

Files

edt_error.h: header file (automatically included if edtinc.h is
included)
edt_error.c: message subroutines
The EdtMsgHandler structure is defined in edt_error.h. Application
programmers should not access structure elements directly; instead
always go through the error subroutines.

edt_msg_init
Description

Initializes a message handle to defaults. The message file is
initialized to stderr. The output subroutine pointer is set to fprintf
(console output). The message level is set to
EDT_MSG_WARNING | EDT_MSG_FATAL.

Syntax
void edt_msg_init(EdtMsgHandler *msg_p)

Arguments
msg_p pointer to message handler structure to initialize

Return
Void

Example
EdtMsgHandler msg_p;

edt_msg_init(&msg_p);

See Also
edt_msg_output

edt_msg
Description

Submits a message to the default message handler, which will
conditionally (based on the flag bits) send the message as an
argument to the default message handler function. Uses the default
message handle, and is equivalent to calling
edt_msg_output(edt_msg_default_handle(), ...). To submit a
message for handling from other than the default message handle,
use edt_msg_output.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 56

Syntax
int edt_msg(int level, char *format, ...)

Arguments
level an integer variable that contains flag bits indicating what 'level' message it is. Flag bits

are described in the overview.

format a string and arguments describing the format. Uses vsprintf to print formatted text to a
string, and sends the result to the handler subroutine. Refer to the printf manual page
for formatting flags and options.

Return
Void

Example
edt_msg(EDTAPP_MSG_WARNING, "file '%s' not found", fname);

See Also

edt_msg_output

edt_msg_output

Description

Submits a message using the msg_p message handle, which will
conditionally (based on the flag bits) send the message as an
argument to the handle's message handler function. To submit a
message for handling by the default message handle, edt_msg.

Syntax

int edt_msg_output(EdtMsgHandler *msg_p, int level, char
*format, ...)

Arguments

msg_p pointer to message handler, initiailzed by edt_msg_init
level an integer variable that contains flag bits indicating what 'level' message it is. Flag

bits are described in the overview.
format a string and arguments describing the format. Uses vsprintf to print

formatted text to a string, and sends the result to the handler
subroutine. Refer to the printf manual page for formatting flags and
options.

Return
Void

Example

EdtMsgHandler msg_p;

edt_msg_init(&msg_p);
edt_msg_set_function(msg_p, (EdtMsgFunction
*)my_error_popup);

edt_msg_set_level(msg_p, EDT_MSG_FATAL | EDT_MSG_WARNING);
if (edt_access(fname, 0) != 0)

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 57

edt_msg_output(
See Also

edt_msg_init, edt_msg_set_function, edt_msg_set_level, edt_msg
edt_msg_close

Description
Closes and frees up memory associated with a message handle. Use
only on message handles that have been explicitly initialized by
edt_msg_init. Do not try to close the default message handle.

Syntax
int edt_msg_close(EdtMsgHandler *msg_p)

Arguments

msg_p the message handle to close

Return
0 on success, -1 on failure

See Also
edt_msg_init

edt_msg_set_level
Description

Sets the "message level" flag bits that determine whether to call the
message handler for a given message. The flags set by this function
are ANDed with the flags set in each edt_msg call, to determine
whether the call goes to the message function and actually results in
any output.

Syntax
void edt_msg_set_level(EdtMsgHandler *msg_p, int newlevel)

Arguments
msg_p the message handle

Example
edt_msg_set_level(edt_msg_default_level(),
EDT_MSG_FATAL|EDT_MSG_WARNING);

Return

Void

edt_msg_set_function

Description

Sets the function to call when a message event occurs. The
default message function is printf (outputs to the console);

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 58

edt_msg_set_function allows programmers to substitute any type
of message handler (pop-up callback, file write, etc).

Syntax
void edt_msg_set_function(EdtErrorFunction f)

Arguments

msg_p the message handle

Example
See edt_msg

Return
Void

See Also
edt_msg, edt_msg_set_level

edt_msg_set_msg_file
Description

Sets the output file pointer for the message handler. Expects a file
handle for a file that is already open.

Syntax
void edt_msg_set_msg_file(EdtMsgHandler *msg_p, FILE *fp)

Arguments
msg_p the message handle

pointer to a file handle that is already open, to which the
messages should be output

Example
EdtMsgHandler msg_p;

 FILE *fp = fopen("messages.out", "w");

 edt_msg_init(&msg_p);

 edt_msg_set_file(&msg_p, fp);

Return
Void

edt_msg_perror
Description

Conditionally outputs a system perror using the default message
pointer.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 59

Syntax
int edt_msg_perror(int level, char *msg)

Arguments
level message level, described in the overview

msg message to concatenate to the system error

Example
if ((fp = fopen ("file.txt", "r")) == NULL)

edt_sysperror(EDT_FATAL, "file.txt");

Return
0 on success, -1 on failure

See Also
edt_perror

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 60

Output Clock Generation
The output clock is generated from a phase-locked loop (PLL) oscillator, a reference crystal, and programmable dividers.
Because each of these components has physical limits to its operation, it may not be possible to get exactly the frequency
desired. To get the expected results, you’ll need to understand how the clock generator operates. Figure diagrams how
the final value is generated.

Figure 1. Legend. Frequency values:

fxtal - PCI GP-20 is 10 MHz or PCI GP-60 is 30 MHz.

fref - The PLL reference frequency must be between 200 KHz and 5.0 MHz.

fvco - The VCO output frequency must be between 50 MHz and 250 MHz.

ffback - The VCO varies fvco until the feedback frequency matches the PLL reference frequency.

fxilinx - The input frequency into the high speed odd divider must be less than 100 MHz.

flow - The divide by n counter input frequency must be less than 30 MHz. If L and X are both set to 1, then frequencies
to 100 MHz may be passed to the divide by 2.

fout - This final divide by 2 assures a 50% output clock duty cycle.

Figure 2. Output Clock Generation Block Diagram

The formula for calculating fout is:

 fout = (N * V * fxtal)/(m * R * H * L * X * 2)

feedback
prescale
V=1 or 8

feedback divider
N=3 to 127

reference divider
M=3 to 127

crystal
oscillator

VCO
VCO output

divider

R=1, 2, 4, or 8

high-speed
odd divider

H=1, 3, 5, or 7

first divide
by n

L=1 to 64 X=1 to 256

divide by 2
for clock
symmetry

second
divide by n

fxtal fref

fvco

fxilinx

flow fout

ffback

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 61

edt_find_vco_frequency_ics307
Description

Computes the phased-lock loop parameter for the ICS 307 chip,
based on an input clock frequency (xtal) and a target frequency
(target). The EdtDev pointer is not required; itc can be set to NULL.
If the xtal value is 0, there should be an EdtDev pointer which can
be used to determine the reference clock frequency.
The nodivide version turns off the final divide by 2 in the FPGA
code; if the current bitfile supports that, frequencies greater than 100
MHz can be targeted.

Syntax
#include “edtinc.h”

#include “edt_ss_vco.h”

double edt_find_vco_frequency_ics307(EdtDev *edt_p, double
target, double xtal, edt_pll *pll, int verbose)

double edt_find_vco_frequency_ics307_nodivide(EdtDev *edt_p,
double target, double xtal, edt_pll *pll, int verbose)

Arguments
edt_p device handle returned from edt_open

target desired ouput frequency in Hz

xtal base frequency of the PCI SS board. Default is 10.3681 MHz

verbose a value of 1 prints a summary of the results to stdout. A value of 0 turns off
output.

Return
The return value is the actual frequency found which comes closest
to the target frequency. The pll structure returns the values required
for edt_set_frequency_ics307.

edt_set_out_clk_ics307

Description
Sets the frequency output on the PCI SS board, using parameters
computed by edt_find_vco_frequency_ics307. The clock_channel
selects the clock channel to which this should be applied.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 62

Syntax
#include “edtinc.h”

#include “edt_ss_vco.h”

void edt_set_out_clk_ics307(EdtDev *edt_p, edt_pll *clk_data,
int clock_channel);

Arguments
edt_p device handle returned from edt_open

clk_data edt_pll structure filled in by edt_find_vco_frequency_ics307 or
edt_find_vco_frequency_ics307_nodivide

clock_channel channel ID (0-3)

edt_set_frequency_ics307

Description
This is a convenience function which first calls
edt_find_vco_frequency_ics307 to compute the parameters for the
ICS 307 PLL chip, then calls edt_set_out_clk_ics307 to set the
frequency on the desired channel. If the target frequency is greater
than 100 MHz, edt_find_vco_frequency_ics307_nodivide is used
instead of edt_find_vco_frequency_ics307.

Syntax
#include “edtinc.h”

#include “edt_ss_vco.h”

double edt_set_frequency_ics307(EdtDev *edt_p, double ref_xtal,
double target, int clock_channel)

Arguments
edt_p device handle returned from edt_open

target desired output frequency in Hz

xtal base frequency of the PCI SS board. Default is 10.3681 MHz

clock_channel channel ID (0-3)

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 63

Registers
The PCI SS has two memory spaces: the memory-mapped registers and the configuration
space. Expansion ROM and I/O space are not implemented.
Applications can access the PCI CD registers through the DMA library routines edt_reg_read
or edt_reg_write using the name specified under Access, or if necessary by means of ioctl()
calls with PCI CD-specific parameters, as defined in the file pcd.h.

Configuration Space
The configuration space is a 64-byte portion of memory required to configure the PCI Local
Bus and to handle errors. Its structure is specified by the PCI Local Bus specification. The
structure as implemented for the PCI CD is as shown in Figure 2 and described below.

Address Bits 31 16 15 0

0x00 Device ID = 0x40 (for pciss1)
 0x41 (for pciss16)
 0x42 (for pciss4)

Vendor ED = 0x123D

0x04 Status (see below) Command (see below)

0x08 Class Code = 0x088000 Revision ID = 0
(will be updated)

0x0C BIST = 0x00 Header Type =
0x00

Latency Timer
(set by OS)

Cache Line Size
(set by OS)

0x10 DMA Base Address Register* (set by OS)

0x14 Remote Xilinx Memory-Mapped IO Base Address Register (set by OS)

 not implemented

0x3C Max_Lat = 0x04 Min_Gnt = 0x04 Interrupt Pin =
0x01

Interrupt Line
(set by OS)

Values for the status and command fields are shown in Tables 3 and 4. For complete
descriptions of the bits in the status and command fields, see the PCI Local Bus Specification,
Revision 2.2, 1998, available from:
PCI Special Interest Group
5440 SW Westgate Drive
 Suite 217
 Portland, OR 97221
 Phone: 800/433-5177 (United States) or 425/803-1191 (international)
 Fax: 503/222-6190
www.pcisig.com

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 64

Bit Name Value Bit Name Value

0–4 reserved 0 10 DEVSEL Timing 0

5 66 MHz Capable 1 11 Signaled Target Abort implemented

6 UDF Supported 0 12 Received Target Abort implemented

7 Fast Back-to-back
Capable

0 13 Received Master Abort implemented

8 Data Parity Error
Detected

implemented 14 Signaled System Error implemented

9 DEVSEL Timing 1 15 Detected Parity Error implemented

Table 3. Configuration Space Status Field Values

Bit Name Value Bit Name Value

0 IO Space 0 6 Parity Error Response implemented

1 Memory Space implemented 7 Wait Cycle Control 0

2 Bus Master implemented 8 SERR# Enable implemented

3 Special Cycles 0 9 Fast Back-to-back
Enable

implemented

4 Memory Write and
Invalidate Enable

implemented 10–
15

reserved 0

5 VGA Palette Snoop 0

Table 4. Configuration Space Status Field Values

PCI Local Bus Addresses
Table 3 describes the PCI SS interface registers in detail. The addresses listed are offsets from
the gate array boot ROM base addresses. This base address is initialized by the host operating
system at boot time.
See the addenda for registers specific to your configuration.

Note The addresses 0x80 and 0x84 are used by the pciload utility to update the gate array.
User applications must not modify use these registers. Results of running pciload do
not take effect until after the board has been turned off and then on again.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 65

A 4-channel PCI uses 0, 20, 40, 60; a 16-channel PCI uses 200, 220, 240, etc. (200 + [channel
number x 20]).
The appropriate PCI Xilinx bitfile to be used is determined by your particular application. If
you use pciss1 or pciss4, refer to the 4-channel table below; if you use pciss16, refer to the 16-
channel table below.
4-Channel
Address Bits 31 16 15 0

0xCC remote Xilinx data

0xC8 PCI interrupt status

0xC4 PCI interrupt and remote Xilinx configuration

0x84 not used flash ROM data

0x80 flash ROM address

0x60 – 7c
(channel 3)

0x40 – 5c
(channel 2)

0x20 –3c
(channel 1)

Channels 1, 2, and 3 are set up the same as Channel 0, starting at their

respective offset.

0x1C scatter-gather DMA next count and control (channel 0)

0x18 scatter-gather DMA current count and control (channel 0)

0x14 scatter-gather DMA next address (channel 0)

0x10 scatter-gather DMA current address (channel 0)

0x0C main DMA next count and control (channel 0)

0x08 main DMA current count and control (channel 0)

0x04 main DMA next address (channel 0)

0x00 main DMA current address (channel 0)

 3 2 1 0 Byte Word

 1 0

Table 5. 4-Channel PCI Local Bus Addresses

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 66

16-Channel
Address Bits 31 16 15 0

0x3E0 – 3FC
(channel 15)

0x3CO – 3DC
(channel 14)

0x3A0 – 3BC
(channel 13)

0x380 – 39C
(channel 12)

0x360 – 37C
(channel 11)

0x340 – 35C
(channel 10)

0x320 – 33C
(channel 9)

0x300 – 31C
(channel 8)

0x2E0 – 2FC
(channel 7)

0x2C0 – 2DC
(channel 6)

0x2A0 – 2BC
(channel 5)

0x280 – 29C
(channel 4)

0x260 – 27C
(channel 3)

0x240 – 25C
(channel 2)

Channels 1 through 15 are set up the same as Channel 0, starting at their

respective offset.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 67

Address Bits 31 16 15 0

0x220 – 23C
(channel 1)

0x21C scatter-gather DMA next count and control (channel 0)

0x218 scatter-gather DMA current count and control (channel 0)

0x214 scatter-gather DMA next address (channel 0)

0x210 scatter-gather DMA current address (channel 0)

0x20C main DMA next count and control (channel 0)

0x208 main DMA current count and control (channel 0)

0x204 main DMA next address (channel 0)

0x200 main DMA current address (channel 0)

0xCC remote Xilinx data

0xC8 PCI interrupt status

0xC4 PCI interrupt and remote Xilinx configuration

0x84 not used flash ROM data

0x80 flash ROM address

 3 2 1 0 Byte Word

 1 0

Table 6. 4-Channel PCI Local Bus Addresses

Scatter-gather DMA

PCI Direct Memory Access (DMA) devices in Intel-based computers access memory using
physical addresses. Because the operating system uses a memory manager to connect the user
program to memory, memory pages that appear contiguous to the user program are actually
scattered throughout physical memory. Because DMA accesses physical addresses, a DMA
read operation must gather data from noncontiguous pages, and a write must scatter the data
back to the appropriate pages. The PCI SS driver uses information from the operating system
to accomplish this. The operating system passes the driver a list of the physical addresses for
the user program memory pages. With this information, the driver builds a scatter-gather (SG)
table, which the DMA device uses sequentially.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 68

Most other PCI computers offer memory management for the PCI bus as well, so the operating
system needs to pass only the address and count for DMA. The addresses appear contiguous to
the PCI bus.
The scatter-gather DMA list is stored in memory. The scatter-gather DMA channel copies it as
required into the main DMA registers. The format of the DMA list in memory is as follows
(illustrated in Figure 6):

 Each page entry takes eight bytes. Therefore, the scatter-gather DMA count is always
evenly divisible by eight.

 The first word consists of the 32-bit start address of a memory page.
 The most significant 16 bits of the second word contain control data.
 The least significant 16 bits of the second word contain the count.

As of the current release, only bit 16 contains control information. When set to one, and when
enabled by setting bit 28 of the Scatter-gather DMA Next Count and Control register, this bit
causes the main DMA interrupt to be set when the marked page is complete.

Bits 63 32 31 16 0

Each entry address control (unused) DMA int count

Table 7. Scatter-gather DMA List Format

Performing DMA

All main DMA registers are read-only. Only the corresponding scatter-gather DMA registers
must write to them. To initiate a DMA transfer:
1. Set up one or more scatter-gather DMA lists in host memory, using the format described

above and illustrated in Figure 6.
2. Write the address of the first entry in the list to the Scatter-gather Next DMA Address

register.
3. Write the length of the scatter-gather DMA list to the Scatter-gather Next DMA Count and

Control register, setting the interrupts as you require. Ensure that bit 29 of this register is
set to 1: this starts the DMA.

4. If the DMA list is greater than one page, load the address of the first entry of the next page
and its length, as described in steps 2 and 3, when bit 29 of the Scatter-gather Next DMA
Count and Control register is asserted.

PCI GP

Document Number: 008-00965 EDT Public Revision: B July 2005
Template: EDT.dot Page 69

Main DMA Current Address Register

Size 32-bit

I/O read-only

Address 0x00

Access EDT_DMA_CUR_ADDR

Comments Automatically copied from the main DMA next address register after
main DMA completes.

Bit Description

A31–0 The address of the current DMA or the last used address if no DMA is currently
active.

Main DMA Next Address Register

Size 32-bit

I/O read-only

Address 0x04 + (channel number x 20 hex)

Access EDT_DMA_NXT_ADDR

Comments The scatter-gather DMA fills this register when required from the
scatter-gather DMA list.

Bit Description

A31–0 Read the starting address of the next DMA.

PCI GP

Document Number: 008-00965 EDT Public July 2005
Template: EDT.dot Page 70

Main DMA Current Count and Control Register

Size 32-bit

I/O read-only

Address 0x08

Access EDT_DMA_CUR_CNT

Comments This register automatically copied from the main DMA next count and
control register after main DMA completes.

Bit Description

A31–16 Read-only versions of bits 31–16 of the scatter-gather DMA current count and
control register.

D15–0 The number of words still to be transferred in the current DMA.

Main DMA Next Count and Control Register

Size 32-bit

I/O read-only

Address 0x0C

Access EDT_DMA_NXT_CNT

Comments The scatter-gather DMA fills this register when required from the
scatter-gather DMA list.

Bit Description

A31–16 Read-only versions of bits 31–16 of the scatter-gather DMA next count and
control register.

D15–0 The number of words still to be transferred in the current DMA.

PCI GP

Document Number: 008-00965 EDT Public July 2005
Template: EDT.dot Page 71

Scatter-gather DMA Current Address Register

Size 32-bit

I/O read-only

Address 0x10

Access EDT_SG_CUR_ADDR

Comments Automatically copied from the scatter-gather DMA next address
register when that register is valid and the current scatter-gather DMA
completes.

Bit Description

A31–0 The address of the current DMA or the last used address if no DMA is currently
active.

Scatter-gather DMA Next Address Register

Size 32-bit

I/O read-write

Address 0x14

Access EDT_SG_NXT_ADDR

Comments The driver software writes this register as described in step 2 of the list
in the Performing DMA section on page 68.

Bit Description

A31–0 The starting address of the next DMA.

PCI GP

Document Number: 008-00965 EDT Public July 2005
Template: EDT.dot Page 72

Scatter-gather DMA Current Count and Control Register

Size 32-bit

I/O read-only

Address 0x18

Access EDT_SG_CUR_CNT

Comments The driver software can read this register for debugging or to monitor
DMA progress.

Bit Description

A31–16 Read-only versions of bits 31–16 of the scatter-gather DMA next count and
control register.

D15–0 The number of words still to be transferred in the current DMA.

PCI GP

Document Number: 008-00965 EDT Public July 2005
Template: EDT.dot Page 73

Scatter-gather DMA Next Count and Control Register

Size 32-bit

I/O read-write

Address 0x1C

Access EDT_SG_NXT_CNT

Comments The driver software writes this register as described in step 2 of the list
in the Performing DMA section on page 68.

Bit EDT_ Description

D31 EN_RDY Enable scatter-gather next empty interrupt. A value of 1
enables DMA_START (bit 29 of this register) to set
DMA_INT (bit 12 of the Status register), thus causing an
interrupt if the PCI_EN_INTR bit is set (bit 15 of the Main
DMA Command and Configuration register).
A value of 0 disables the DMA_START from causing an
interrupt.

D30 DMA_DONE Read-only: a value of 0 indicates that a scatter-gather DMA
transfer is currently in progress. A value of 1 indicates that
the current scatter-gather DMA is complete.

D29 DMA_START Write a 1 to this bit to indicate that the values of this
register and the SG DMA Next Address register are valid;
this sets this bit to 0, indicating either that the copy is in
progress, or that the device is waiting for the current DMA
to complete. In either case, this register and the SG DMA
Next Address register are not available for writing.
Reading a value of 1 indicates that the SG DMA Next
Count and SG DMA Next Address registers have been
copied into the SG DMA Current Count and SG DMA
Current Address registers and that the Next Count and
Next Address registers are once more available for writing.

D28 EN_MN_DONE A value of 1 enables the main DMA page done interrupt (bit
18).

D27 EN_SG_DONE Enable scatter-gather DMA done interrupt. A value of 1
enables DMA_DONE (bit 30 of this register) to set
DMA_INT (bit 12 of the Status register), thus causing an
interrupt if the PCI_EN_INTR bit is set (bit 15 of the Main
DMA Command and Configuration register).
A value of 0 disables the DMA_DONE from causing an
interrupt.

D26 DMA_ABORT A value of 1 stops the DMA transfer in progress and
cancels the next one, clearing bits 29 and 30. Always 0
when read.

D25 DMA_MEM_RD A value of 1 specifies a read operation; 0 specifies write.

PCI GP

Document Number: 008-00965 EDT Public July 2005
Template: EDT.dot Page 74

D24 BURST_EN A value of 0 means bytes are written to memory as soon as
they are received. A value of 1 means bytes are saved to
write the most efficient number at once.

D23 MN_DMA_DONE Read only: a value of 1 indicates that the main DMA is not
active.

D22 MN_NXT_EMP Read only: a value of 1 indicates that the main DMA next
address and next count registers are empty.

D21–19 Reserved for EDT internal use.

D18 PG_INT Read-only: a value of 1 indicates that the page interrupt is
set (enabled by bit 28 of this register), and that the main
DMA has completed transferring a page for which bit 16
(the page interrupt bit) was set in the scatter-gather DMA
list (see Figure 6). If the PCI interrupt is enabled (bit 15 of
the PCI interrupt and remote Xilinx configuration register),
this bit causes a PCI interrupt.

Clear this bit by disabling the page done interrupt (bit 28 of
this register).

D17 CURPG_INT Read-only: a value of 1 indicates that bit 16, the page
interrupt bit, was set in the scatter-gather DMA list entry for
the current main DMA page.

D16 NXTPG_INT Read-only: a value of 1 indicates that bit 16, the page
interrupt bit, was set in the scatter-gather DMA list entry for
the next main DMA page.

D15–0 The number of bytes in the next scatter-gather DMA list.

PCI GP

Document Number: 008-00965 EDT Public July 2005
Template: EDT.dot Page 75

Interrupt Registers

PCI Interrupt and Remote Xilinx Configuration Register

Size 32-bit

I/O read-write

Address 0xC4

Access EDT_REMOTE_OFFSET

Comment Remote Xilinx is also referred to as Interface or User Xilinx.

Bit EDT_ Description

D31–22 Not used.
D21 RMT_STATE Remote Xilinx INIT pin state. This bit is read-only.
D20 RMT_DONE Remote Xilinx DONE pin.
D19 RMT_PROG Remote Xilinx PROG pin.
D18 RMT_INIT Remote Xilinx INIT pin.
D17 EN_CCLK Enable one configuration clock cycle to remote Xilinx.
D16 RMT_DATA Remote Xilinx program data.
D15 PCI_EN_INTR Enable PCI interrupt.
D14 RMT_EN_INTR Enable Remote Xilinx interrupt.
D13–9 Not used.
D8 RFIFO_ENB After the remote Xilinx has been programmed to your

satisfaction:
1. Clear, then set bit D3 of the remote Xilinx command

register.
2. Set this bit to enable the burst data FIFO.

D7 Not used.
D6–0 RMT_ADDR 128-byte address of remote Xilinx register.

To program the remote Xilinx:
1. Set the PROG and INIT pins low.
2. Wait for DONE (D20) to be low.
3. Set the PROG and INIT pins high.
4. Loop until INIT state (D21) goes high.
5. Wait four μs.
6. Write programming date, one bit at a time, to D16 with D17 high.
7. After all data is written, continue writing ones to D16 until DONE (D20) goes high.

PCI GP

Document Number: 008-00965 EDT Public July 2005
Template: EDT.dot Page 76

The programming has failed if it has not completed after 32 clock cycles.

PCI Interrupt Status Register

Size 32-bit

I/O read-only

Address 0xC8

Access EDT_DMA_STATUS

Comments The driver uses this register initially to determine the source of a PCI
interrupt.

Bit EDT_ Description

D16–31 Not used.
D15 PCI_INTR PCI interrupt. When asserted, the PCI CD is asserting an

interrupt on the PCI bus.
D14 Not used.
D13 RMT_INTR Remote Xilinx interrupt. When asserted, the remote Xilinx

interrupt is set. If bits 14 and 15 of the the PCI interrupt and
remote Xilinx configuration register are aserted, the remote
Xilinx causes a PCI interrupt.

D12 RMT_INTR End of DMA interrupt. Asserted when at least one of the
DMA interrupts is asserted in the scatter-gather DMA next
count and control register. Causes a PCI interrupt if bit 15
of the PCI interrupt and remote Xilinx configuration register
is enabled.

D11–0 Not used.

PCI GP

Document Number: 008-00965 EDT Public July 2005
Template: EDT.dot Page 77

Specifications
PCI Bus Compliance
Number of Slots 1
Transfer Size Maximum 64 bytes per transfer
DVMA master Yes
PCI Bus memory space Approximately 66 KB
Clock Rate 33 MHz

Device Data Transfer
Protocol Synchronous stream
Buffers Application specific

Software Drivers for Solaris 2.6+ (Intel and

SPARC platforms), Windows NT/2000/XP Version 4.0, AIX Version
4.3, Irex 6.5, and Linux Red Hat Version 5.1

Power 5 V at 1.5 A

Environmental
Temperature Operating: 10 to 40° C

Nonoperating: -20 to 60° C
Humidity Operating: 20 to 80% noncondensing at 40° C

Nonoperating: 95% noncondensing at 40°C

Physical
Dimensions 3.3” x 5.78” x 0.5”
Weight 3.5 oz

Table 8. PCI Bus Configurable DMA Interface Specifications

