

User’s Guide

 EDT Camera Link
Simulator (CLS) Family

for PCI or PCI Express

Date: 2014 November 10
Rev#: 0004

EDT, Inc. 2

EDT | Engineering Design Team, Inc.
3423 NE John Olsen Ave
Hillsboro, OR 97124
U.S.A.
Tel: +1-503-690-1234 | Toll free (in U.S.A.): 800-435-4320
Fax: +1-503-690-1243
www.edt.com

TM TMEDT and Engineering Design Team are trademarks of Engineering Design Team, Inc. All other trademarks, service marks,
and copyrights are the property of their respective owners†.

© 1997-2019 Engineering Design Team, Inc. All rights reserved.

EDT, Inc. 3

Terms of Use Agreement

Definitions. This agreement, between Engineering Design Team, Inc. (“Seller”) and the user or distributor (“Buyer”), covers the
use and distribution of the following items provided by Seller: a) the binary and all provided source code for any and all device
drivers, software libraries, utilities, and example applications (collectively, “Software”); b) the binary and all provided source code
for any and all configurable or programmable devices (collectively, “Firmware”); and c) the computer boards and all other physical
components (collectively, “Hardware”). Software, Firmware, and Hardware are collectively referred to as “Products.” This
agreement also covers Seller’s published Limited Warranty (“Warranty”) and all other published manuals and product information
in physical, electronic, or any other form (“Documentation”).
License. Seller grants Buyer the right to use or distribute Seller’s Software and Firmware Products solely to enable Seller’s
Hardware Products. Seller’s Software and Firmware must be used on the same computer as Seller’s Hardware. Seller’s Products
and Documentation are furnished under, and may be used only in accordance with, the terms of this agreement. By using or
distributing Seller’s Products and Documentation, Buyer agrees to the terms of this agreement, as well as any additional
agreements (such as a nondisclosure agreement) between Buyer and Seller.
Export Restrictions. Buyer will not permit Seller’s Software, Firmware, or Hardware to be sent to, or used in, any other country
except in compliance with applicable U.S. laws and regulations. For clarification or advice on such laws and regulations, Buyer
should contact: U.S. Department of Commerce, Export Division, Washington, D.C., U.S.A.
Limitation of Rights. Seller grants Buyer a royalty-free right to modify, reproduce, and distribute executable files using the
Seller’s Software and Firmware, provided that: a) the source code and executable files will be used only with Seller’s Hardware;
b) Buyer agrees to indemnify, hold harmless, and defend Seller from and against any claims or lawsuits, including attorneys’ fees,
that arise or result from the use or distribution of Buyer’s products containing Seller’s Products. Seller’s Hardware may not be
copied or recreated in any form or by any means without Seller’s express written consent.
No Liability for Consequential Damages. In no event will Seller, its directors, officers, employees, or agents be liable to Buyer
for any consequential, incidental, or indirect damages (including damages for business interruptions, loss of business profits or
information, and the like) arising out of the use or inability to use the Products, even if Seller has been advised of the possibility
of such damages. Because some jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental
damages, the above limitations may not apply to Buyer. Seller’s liability to Buyer for actual damages for any cause whatsoever,
and regardless of the form of the action (whether in contract, product liability, tort including negligence, or otherwise), will be
limited to fifty U.S. dollars ($50.00).
Limited Hardware Warranty. Seller warrants that the Hardware it manufactures and sells shall be free of defects in materials
and workmanship for a period of 12 months from date of shipment to initial Buyer. This warranty does not apply to any product
that is misused, abused, repaired, or otherwise modified by Buyer or others. Seller’s sole obligation for breach of this warranty
shall be to repair or replace (F.O.B. Seller’s plant, Beaverton, Oregon, U.S.A.) any goods that are found to be non-conforming or
defective as specified by Buyer within 30 days of discovery of any defect. Buyer shall bear all installation and transportation
expenses, and all other incidental expenses and damages.
Limitation of Liability. In no event shall Seller be liable for any type of special consequential, incidental, or penal damages,
whether such damages arise from, or are a result of, breach of contract, warranty, tort (including negligence), strict liability, or
otherwise. All references to damages herein shall include, but not be limited to: loss of profit or revenue; loss of use of the goods
or associated equipment; costs of substitute goods, equipment, or facilities; downtime costs; or claims for damages. Seller shall
not be liable for any loss, claim, expense, or damage caused by, contributed to, or arising out of the acts or omissions of Buyer,
whether negligent or otherwise.
No Other Warranties. Seller makes no other warranties, express or implied, including without limitation the implied warranties
of merchantability and fitness for a particular purpose, regarding Seller’s Products or Documentation. Seller does not warrant,
guarantee, or make any representations regarding the use or the results of the use of the Products or Documentation or their
correctness, accuracy, reliability, currentness, or otherwise. All risk related to the results and performance of the Products and
Documentation is assumed by Buyer. The exclusion of implied warranties is not permitted by some jurisdictions. The above
exclusion may not apply to Buyer.
Disclaimer. Seller’s Products and Documentation, including this document, are subject to change without notice. Documentation
does not represent a commitment from Seller.

EDT, Inc. 4

Contents
Overview ... 5

Requirements... 6
PCI Express (PCIe) ... 6
PCI... 6

Related Resources... 7
Installation... 8

Included Files ... 8
Application Programming Interface (API)... 9
Building or Rebuilding an Application... 10

Getting Started.. 11
Simple Image Data Verification.. 11
Simple Serial Verification ... 11

Operational Details ... 12
Image Data Source .. 12
Serial Data ... 12
Triggering ... 13

Units, Connectors, and Channels ... 13
Initializing the Board.. 15

Using clsiminit .. 15
Options for clsiminit.. 16
Simulator-specific Configuration File Directives... 17

Sending Simulated Data ... 18
Image Data From Internal Counter .. 18
Image Data From Host Via DMA – with simple_clsend ... 18
Image Data From Host Via DMA – with send_tiffs... 19

send_tiffs image list format.. 20
send_tiffs code overview ... 21

Firmware ... 22
Checking and Loading the Firmware ... 22
Corrupted Firmware ... 24
Camera Link (MDR26) Connectors.. 26
Debug Connector ... 27
Camera Link Registers... 28
Simulator Registers.. 32
Timing Registers .. 34
Interleaving Registers .. 37

Revision Log ... 40

CLS Overview

EDT, Inc. 2014 November 10 5

EDT Camera Link Simulator (CLS) Family

Overview
This guide covers EDT Camera Link simulator (CLS) boards. A CLS board sends simulated Camera Link
images to a frame grabber via Camera Link cabling. As an alternative, the PCIe simulator (PCIe8 DVa CLS)
can be converted to a fully functional frame grabber (PCIe8 DVa C-Link) via a simple firmware utility, as
outlined in the EDT user’s guide for Camera Link PCIe frame grabbers (see Related Resources on page 7).

Table 1 lists each EDT CLS product, along with modes supported and other key information.

Figure 1 and Figure 2 show diagrams of the CLS products.

Figure 1. Current (“DVa”) product: PCIe8 DVa CLS

Table 1. Products in the EDT CLS Family
Product Status Bus type Modes Data rate Notes / Unique Features

PCIe8 DVa CLS Current (“DVa”*) PCIe
(8-lane)

Base, dual base,
medium, or full mode

Up to 850 MB/s Easily converts to a frame grabber. As a frame grab-
ber, Power over Camera Link (PoCL) can be en-
abled; as a simulator, PoCL must be disabled.

PCIe8 DV CLS Legacy (“DV”*) PCIe
(8-lane)

Base, dual base,
medium, or full mode

Up to 300 MB/s Functionally equivalent to “DVa” version, except it
has lower data speed and does not provide frame
grabber PoCL support.

PCI DV CLS Legacy (“DV”*) PCI
(32 bits /
66 MHz)

Base (8-bit, 1- or 2-tap; or
24-bit RGB) or medium
mode (8-bit, 4-tap)

Up to 200 MB/s Does not convert to frame grabber.

* Note that current products have “DVa” in the name, while legacy products have “DV” (with no “a”) in the name.

PCIe8 DVa CLS
1
3
5
7
9

 2
 4
 6
 8
10

Berg
connectorOptional Lemo

Base 0 /
primary

Base 1 /
secondary

Connectors

FVAL
LVAL
DVAL
PCLK

DEBUG

 5 3 1

 1

NORM
NORM

PROT
ALT

 6 4 2

LEDs
(on back)

 3 2 1

PoCL
select

 3 2 1
PoCL - framegrabber mode only
Disabled Enabled

 3 2 1 3 2 1

FPGA boot select
Program-
mable Protected

 1

 2

 1

 2
(sector 0) (sector 3)

 = pin
 = hole
 = ground (pin)
 = ground (hole)

Not to scale;
bold = default.

slot for optional memory

CCAUTION! To avoid a short (shown by a red LED behind the back
panel, near the affected connector) related to the PoCL jumpers:
> If using a framegrabber (or using a CLS board as a framegrabber)
with PoCL enabled, always use PoCL cables and devices, and
power off all devices before connecting or disconnecting cables.
> If using a CLS board as a simulator, always disable PoCL.

CLS Overview

EDT, Inc. 2014 November 10 6

Figure 2. Legacy (“DV”) products: PCI DV CLS and PCIe8 DV CLS

Requirements
EDT CLS products are high-speed DMA devices that require adequate bus bandwidth for reliable operation,
especially depending upon such elements as the motherboard and chipset. In addition, different cameras
run at different speeds, so bandwidth requirements will vary depending on which camera is being simulated.
Therefore, you should choose and configure your system with bus bandwidth requirements in mind.

PCI Express (PCIe)
For PCIe, performance rates depend upon your system and its setup. Systems using EDT PCIe 8-lane
vision products have tested at the maximum Camera Link specification of 850 MBytes.

EDT’s PCIe boards will not work in slots dedicated for graphics display, such as slots typically labeled
“graphics” in some Dell system specifications. Consult your motherboard manufacturer to find out
specifically which slots are available for general purpose I/O.

EDT’s PCIe 8-lane boards will fit in 1, 8, or 16-lane slots. In 8- or 16-lane slots the boards will work at their
rated bandwidth. In 1-lane slots the bandwidth will be reduced to roughly one-eighth the maximum.

PCI
For PCI, the interface runs at 66 MHz and can sustain a maximum DMA bandwidth of approximately
200 MBytes per second. Use the PCI DV CLS in a slot that is 66 MHz or faster (you can use a 33 MHz slot,
but the maximum sustainable DMA bandwidth will then drop to approximately 90–95 MBytes per second).
If your application exceeds these limits, then data loss (broken images or timeouts) will occur.

The PCI DV CLS has a 32-bit PCI data bus, though you can use it in a 64-bit bus slot.

If your CLS board and your frame grabber reside in the same host and use the same PCI bus, then they
share the bus bandwidth. If the total bandwidth requirements of both boards exceed the PCI bandwidth
limits specified above, move either the CLS or the frame grabber so that they use different PCI buses.

NOTE If your image source is an internal counter, not actual images from the host computer (see Sending
Simulated Data on page 18), the CLS is not using the PCI / PCIe bus for DMA and thus is not consuming
bus bandwidth.

PCI DV CLS PCIe8 DV CLS

Base 1 /
secondary

Base 0 /
primary

Connectors 1

Programmable

Protected

FPGA boot select

Bus clock select
Auto / 66 MHz

33 MHz

PCI DV CLS

Not to scale. = ground; bold = default.

-10.1009 in

1 DEBUG

Base 0 /
primary

Base 1 /
secondary

Connectors

PCIe8 DV CLS

Optional Lemo

Not to scale; bold = default.

PCLK FVAL

DVAL LVAL

1

Maximum # of lanes

(usually this jumper should be
left in the x8 position, even if the
board is in an x16, x4, or x1 slot)

FPGA boot select
Programmable

Protected

x8 x4 x1

CLS Overview

EDT, Inc. 2014 November 10 7

Related Resources
The resources below may be helpful or necessary for your applications.

EDT Resources

Description Detail Web link

• Product specifications (datasheets) PCI DV CLS, PCIe8 DV CLS,
PCIe8 DVa CLS

www.edt.com (search by product)

• Current (“DVa”) frame grabbers For PCIe www.edt.com/digital_video.html

• Legacy (“DV”) frame grabbers For PCIe and PCI www.edt.com/digital_video.html

• Extenders for frame grabbers For fiber and coax www.edt.com/digital_video.html

• Addendum: Firmware Guide For EDT firmware www.edt.com/manuals/PDV/dv-
clink.pdf

• Addendum: Camera Configuration Guide For cameras tested by EDT www.edt.com/manuals/PDV/camco
nfig.pdf

• Application programming interface (API) HTML & PDF www.edt.com/manuals.html

• Installation packages:
Windows, Linux, Mac OS X

Software / firmware www.edt.com/software.html

Standards / Specifications
Description Web link

• Camera Link Camera Link standard www.visiononline.org

Parts

Description Part number Manufacturer Web link

Cabling [multiple options] [multiple options] www.edt.com/cables

http://www.edt.com
http://www.edt.com/digital_video.html
http://www.edt.com/digital_video.html
http://www.edt.com/digital_video.html
http://www.edt.com/manuals/PDV/dv-clink.pdf
http://www.edt.com/manuals/PDV/camconfig.pdf
http://www.edt.com/manuals.html
http://www.edt.com/software.html
http://www.visiononline.org
http://www.edt.com/cables

CLS Installation

EDT, Inc. 2014 November 10 8

Installation
EDT provides installation packages for all supported operating systems (Windows, Linux, Mac OS X).
These packages are provided on the EDT installation disk that ships with your EDT product.

However, to prevent installation package version issues, EDT recommends that you go to www.edt.com and
do one of the following:

• For a new application, download the latest package.

• For an existing application, use the same package that was used to build it (from your own or EDT’s
archives), or recompile / relink the application with the latest installation package download.

NOTE Remove previous software releases before installing updates.

In either case, to find the installation package you need (either the latest one or an archived version), you
can use the link under Related Resources on page 7.

To install the CLS:

1. Install the Pdv driver software as specified above.

2. Install the board into the host computer according to the computer manufacturer’s instructions.

3. Connect the board to your frame grabber or other input device with a standard Camera Link cable. For
part information, see the link under Related Resources on page 7. For connector pinouts, see Appendix
A: Pin Assignments on page 26.

NOTE If you are using a single base-mode input device with a legacy “DV” CLS board (PCI DV CLS or PCIe8
DV CLS), the input device must connect to the CLS board’s primary MDR26 connector (i.e., the one
nearest the PCI / PCIe bus). With a current “DVa” CLS board, (PCIe8 DVa CLS), such a device can
connect to either MDR26 connector. For details, see Units, Connectors, and Channels on page 13.

Included Files
The EDT PDV installation package includes files for all EDT vision products. Some files, like the device
driver, are common to all products, while other files apply only to certain products. Files specific to the CLS
include a CLS setup application, as well as C source and executables for several command-line example,
diagnostic, and utility programs. These CLS-specific files are listed in the table below.

NOTE For Windows executables, the extension .exe is implied.

Table 2. CLS-specific files, part 1 of 2

File Description

clstest256.cfg Sample configuration file for demonstration, testing, or verification (via simple_clsend or send_tiffs).
Located in camera_config.

clsim.bit FPGA configuration file for the PCI version of the CLS. (On the PCIe version, the UI FPGA is embedded.)

clsim_lib.c, cl-
sim_lib.h

C source and header file for clsim_lib – the portion of the PCI DV library (pdvlib) that covers CLS boards.

clsiminit,

clsiminit.c

A command-line application (binary and source code) to set up the CLS for a specific output. For the list of arguments
and options, enter...

clsiminit --help

clsimvar,

clsimvar.c

Utility to test line scan operation; includes option to vary the output line length. For usage, enter...

clsimvar --help

dvcl4*.bit FPGA configuration files for PCI CLS boards (see Firmware on page 22). Located in flash/xc2s200.

http://www/edt/com

CLS Installation

EDT, Inc. 2014 November 10 9

Application Programming Interface (API)
EDT provides a common application programming interface (API) for all supported operating systems, so
an application written for one EDT vision product will work with the others with minimal modification; any
exceptions – such as differences between Windows, Linux, and Mac OS X – are noted in this guide.

The API includes three subset libraries:

• clsim_lib (pdv_cls_ subroutines) – this library includes subroutines for EDT simulators only.

• edtlib (edt_ subroutines) – this library includes subroutines (e.g., pdv_configure_ring_buffers,
edt_start_buffers) that are used for configuring DMA and sending out data.

• pdvlib (pdv_ subroutines) – this library includes subroutines that work with both simulators and frame
grabbers (e.g., pdv_open, pdv_close), as well as subroutines that are for frame grabbers only.

To learn how these subroutines are used in practice, see the example applications. All of these resources
are provided in your EDT installation package (see Related Resources on page 7).

generic*cl.cfg Generic files (in camera_config directory) that you can copy and edit to configure the CLS for the camera you are
simulating. Provide at least values for image height, width, and depth. For details, see Initializing the Board on page 15.

imagelist.txt Sample image list for demonstration, testing, or verification (via simple_clsend or send_tiffs).

pe8dvaclsim*.bit,
pe8dvclsim*.bit

FPGA configuration files for PCIe CLS boards (see Firmware on page 22). Located in flash/xc5vlx30t.

send_tiffs,

send_tiffs.c

A command-line application (binary and source code) to send one or more TIF images to the frame grabber as simu-
lated camera image data. For details on using this application, see Sending Simulated Data on page 18.

simple_clsend, sim-
ple_clsend.c

A command-line application (binary and source code) to send one or more image files to the frame grabber as simu-
lated camera image data – similar to send_tiffs but with much of the rarely-used functionality stripped out.
Currently it works for TIF image files only, but has stubs for other image formats to make it easier for users to add their
own image formats (some of which will be filled in by EDT in future versions). Though not all that simple, simple_-
clsend is simpler as example code than send_tiffs. For details on using this application, see Sending
Simulated Data on page 18.

tiffs256/*.tif Sample images for demonstration, testing, or verification (via simple_clsend or send_tiffs).

pdvlib.* Library binaries for the EDT digital imaging library, including clsim_lib.c functions; see clsim_lib.c
(above) and consult the EDT API (see Related Resources on page 7]. Files installed on Windows have the extensions
.lib and .dll; files installed on Linux have the extensions .so and .a; and files installed on Mac OS X
have the extensions .so and .dylib.

Table 2. CLS-specific files, part 2 of 2

CLS Installation

EDT, Inc. 2014 November 10 10

Building or Rebuilding an Application
By default, EDT’s installation package is saved in C:\EDT\pdv (Windows) or /opt/EDTpdv (Linux / Mac
OS X). The package includes C source and executables for all EDT examples, utilities, and diagnostics.

NOTE Applications which access EDT boards must be compiled and linked to match the platform in use (32- or 64-bit).
Applications linked with 32-bit EDT libraries will not run correctly on 64-bit systems, or vice versa. The EDT driver
/ software installation script detects whether the system is running 32- or 64-bit, and installs the appropriate files.

To build or rebuild programs, use an appropriate compiler and follow the steps below.

Windows (Visual Studio 6.0 or later) Linux or Mac OS X

1. From the installation directory C:\EDT\pdv, run
Pdv Utilities.

1. In a terminal window, navigate to the installation
directory /opt/EDTpdv.

2. Do any of the following: 2. Do any of the following:

–. To build or rebuild a specific application, first
make sure your build environment variables
are set properly. For example, enter...

C:\Program Files (x86)\Microsoft
Visual Studio 9.0\VC\vcvarsall
.bat amd64

Then enter...

nmake file
...replacing file with the name of the
example program you wish to build.

–

–

To build or rebuild a specific application,
enter...

make file
...replacing file with the name of the
example program you wish to build.

To build or rebuild and install all of the EDT
examples, utilities, and diagnostics, navigate
to the installation directory and enter...

make

– To build or rebuild and install all of the EDT
examples, utilities, and diagnostics, navigate
to the installation directory and enter...

nmake
– Alternatively, you can use the included Visual

Studio 2008 project, or set up your own
project in Visual C++.

CLS Getting Started

EDT, Inc. 2014 November 10 11

Getting Started
Your EDT installation package includes various resources to help you get started and verify that your
simulator is working properly. It covers how to initialize your board, transfer image file data, and test serial
communication.

For details on the below applications and examples, see the C source code and the documentation for each:
this guide covers clsiminit, simple_send, and pdvterm, while the EDT user’s guide for frame grabbers
(see Related Resources on page 7) covers take and initcam.

For details on usage, you can also run...
appname --help

Simple Image Data Verification
The following example sequence is for an EDT frame grabber with an EDT simulator (enumerated by the
system as 0 and 1 respectively in this example). If you are using a third-party frame grabber, initialize it as
instructed in the manufacturer’s documentation to capture 256 x 256 x 8 bits and view the results).

To begin, connect the frame grabber to channel 0 (the MDR26 connector closest to the motherboard).

For your setup, run pciload with no arguments to see how the system has enumerated your devices, and
then adjust the -u and -pdvN arguments accordingly. .

Example sequence:

initcam -u 0 -f camera_config/clstest256.cfg #(to initialize the EDT frame grabber)

clsiminit -u 1 -f camera_config/clstest256.cfg #(to initialize the EDT simulator)

simple_clsend -u 1 -m -l 0 -i imagelist.txt #(to continuously send all images in the directory
clstest256; note that the character after -u is the digit “1” and the character after -m is the letter “l”)

send_tiffs -u 1 -i imagelist.txt

In another window:

take -u 0 -N 4 -l 100 #(capture 100 images with the EDT frame grabber and make sure no timeouts)

...or...

pdvshow -pdv0 #(use pdvshow to capture and view images from the EDT frame grabber)

Simple Serial Verification
To test serial communication, use the loopback option (-l) to clsiminit, which enables UART looping to
echo back every character sent. Then use the pdvterm terminal emulator application. For example:
clsiminit -u 1 -l -f camera_config/clstest256.cfg

pdvterm

> aabbccdd (output should look like this if you type "abcd")

CLS Operational Details

EDT, Inc. 2014 November 10 12

Operational Details
EDT’s CLS boards provide the following key features:

• Field-programmable gate arrays (FPGAs), to implement DMA:

• A choice between two sources of image data – either internal counters, or DMA from the host computer;

• Serial data; and

• Triggering.

This section explains how these features are implemented.

Image Data Source
With the CLS board, your source for simulated image data can be internal counters on the board itself, or
actual image data sent to the DMA buffers by the send_tiffs application. Alternatively, you can write your
own application to send data to the DMA buffers.

If your source is internal counters, the CLS does not use the DMA engine to transfer data.

If your source is DMA, the DMA engine transfers the data as described below.

NOTE The transfer process below applies to both sources, except that if your source is internal counters, the
references to DMA do not apply.

When each frame starts, the simulator does not begin sending the image until after it has collected 16 KB
of DMA data into its FIFO from the host. (This number can be lowered to accommodate images of less than
16 KB.) Once started, the image data from the host streams through the simulator continuously until the end
of the image; if the DMA cannot keep up, there is a FIFO underflow, and the image data transferred to the
frame grabber is corrupted. In this case, if the DMA is not reinitialized between frames, subsequent frames
may show skewed data. However, the timing of the pixel clock, line-valid, and frame-valid signals from the
simulator is not affected by underflows.

At the end of the image, the simulator pauses for a period of time specified by the 0x4C–4E Vertical Count
Maximum (the value in those registers, minus the active video time specified in the 0x4A–4B Vertical Active)
before readying itself for the next image. Once ready, it waits for DMA data to arrive before starting again.
To stop the simulator, the host need only stop the DMA transfer.

The PCIe version of the CLS can support full mode (up to 8 taps, 8 bits per pixel) as well as all of the medium
modes (4 taps at 8 to 16 bits per pixel).

In some applications, the number of rasters in each image can vary. Before the frame is started, the raster
count is written into 0x4A–4B Vertical Active by the host. When the frame is started, this information is
transferred to a holding register. The rising edge of frame-valid can trigger an interrupt to the host, and the
host then has an entire frame transfer time to respond to this interrupt and modify the registers for the next
frame. Values in certain other registers (0x44 FillA, 0x46 FillB, 0x4C–4E Vertical Count Maximum, 0x58–59
Horizontal Read Valid Start, and 0x5A–5B Horizontal Read Valid End) are held in holding registers in the
same way, allowing them also to be modifed for each frame.

Serial Data
In addition to the frame-valid interrupt, the CLS also implements interrupts associated with the universal
asynchronous receiver and transmitter (UART). You can send and receive serial data to and from the UART
using the pdv_serial library functions.

CLS Units, Connectors, and Channels

EDT, Inc. 2014 November 10 13

Triggering
The CLS can be configured to trigger each frame-valid signal from the frame grabber using the rising edge
of the CC1 camera control line. The trigger is ignored unless all other conditions for start-of-frame are
already met – such as the completion of any vertical blanking interval specified for the previous frame, and
the collection of sufficient DMA data in the FIFO.

To emulate the EXSYNC input to Dalsa linescan cameras, you can configure the CLS to trigger each line-
valid signal on either the rising or falling edge of the CC1 line.

For more details, consult the EDT user’s guide for your frame grabber (see Related Resources on page 7).

Units, Connectors, and Channels
This section covers how to work with multiple units, connectors, and channels, which are defined as follows:

unit EDT product (board)

connector physical connector (for example, an MDR26 connector)

channel DMA channel

A typical C-Link board has two MDR26 connectors.

In base mode, each device requires one connector on the EDT board, and each connector provides one
DMA channel. Thus, in base mode, an EDT simulator with two connectors has two DMA channels.

In medium or full mode, each device requires two connectors on the EDT board. In this case, the two
connectors work together to support one DMA channel.

NOTE In EDT hardware, the connectors are labeled 0 and 1 on some boards, but 1 and 2 on others.
Regardless of the labels on the hardware, the software always counts the connectors in order as 0
(primary), 1 (secondary), and so on, with 0 being the connector nearest the PCIe bus.

If you install one board in your host system, the system will assign the default unit number (0) to that board.
If you install multiple boards, the system will assign a unique unit number to each board, starting with 0 (the
sequence is system-dependent). Typically, the unit number is an argument when invoking an application
(such as clsiminit or simple_clsend) or a parameter passed into one of the EDT subroutines.

The figure below shows an example of how the software enumerates the units (boards) and the connectors
on each board. The default for the first unit number, connector number, and DMA channel number is always
0, with additional units, connectors, and DMA channels numbered as 1, 2, and so on.

CLS Units, Connectors, and Channels

EDT, Inc. 2014 November 10 14

Figure 3. Example of unit numbering and connector numbering

If you are using multiple EDT boards (units), or multiple connectors on a single EDT board, the software
provides a unique handle to represent each unit and connector. Unless you specify something else, any
application (either your own or EDT’s) seeking access to the devices will default to unit 0, connector 0.

The way that you address the appropriate unit and DMA channel will depend on what you are doing.

• For EDT example and utility applications, use the arguments...
-u unit

-c channel

• For EDT API, use pdv_open_channel(..., unit, channel). For each device, the open routine will
return a pointer to the structure that represents the opened device (unit and DMA channel); this pointer
appears in EDT examples and documentation as pdv_p. Each unit / channel combination can be
opened and manipulated independently by passing the appropriate pointer to the library subroutines.
For details, consult the EDT API (see Related Resources on page 7).

If you have multiple boards using the Pdv driver installed in your host computer, you must supply a unit
number to specify which one you wish to initialize:

appname -u unit_number -c channel_number other_arguments

By default, EDT applications will address unit 0, connector 0 (the primary connector). If you are using
multiple EDT boards (simulators, frame grabbers, or both), you can specify a particular board or connector
by using the argument -u or -c, respectively.

For example, to initialize unit 1 (the second board) and connector 1 (the secondary connector), enter...

clsiminit -u 1 -c 1 camera_config/file

NOTE In your EDT installation package, running pciload with no arguments will display a list of all boards
(by unit number) installed in the host, or in some cases to update or reprogram your board’s firmware.
For details, consult the user’s guide for your frame grabber (see Related Resources on page 7).

Unit 0,
Connector 0
(primary
connector)

Unit 0,
Connector 1
(secondary
connector)

Unit 1,
Connector 0
(primary
connector)

Unit 1,
Connector 1
(secondary
connector)

Unit ordering is system-dependent, starting with unit 0.
Connector ordering always starts with the connector nearest
the PCIe bus, which EDT software always calls connector 0.

CLS Initializing the Board

EDT, Inc. 2014 November 10 15

Initializing the Board
As much as possible considering its different purpose, your CLS is designed to work like an EDT Camera
Link frame grabber, and the software described here is designed to work in a manner similar to the initcam
frame grabber initialization utility. EDT camera configuration directives and digital imaging library functions
that can be used with a camera simulator are available for your own applications.

Using clsiminit
The clsiminit program can be used to initialize and configure the CLS.

For example...
C:\EDT\pdv> clsiminit -f camera_config/generic8cl.cfg

...sets up the CLS according to the directives specified in the camera configuration file generic8cl.cfg.

Camera configuration files are editable text files. To use generic8cl.cfg, first edit the file to specify at
least the image height, width, and depth, according to the camera you wish to simulate. Alternatively, if you
wish to simulate a camera for which a file already exists, you can use that file instead; the clsiminit
application reads the same files as initcam. The files provide values for such parameters as image
dimensions and number of taps. For details on initcam and camera configuration files, consult the Camera
Configuration Guide and the EDT frame grabber user’s guide (see Related Resources on page 7).

In addition to directives used to configure the software for specific cameras, the simulator accepts other
directives that set its pixel clock speed, blanking interval, and other parameters (listed in Simulator-specific
Configuration File Directives on page 17). You can set simulator-specific parameters via arguments to
clsiminit or you can add these directives to any camera configuration file. Since initcam ignores any
simulator-specific directives, you can use the same configuration file with initcam and clsiminit.

After you run clsiminit, the CLS is ready for output DMA at the specified size.

Just as initcam does for frame grabbers, clsiminit supports simulators by filling in the PdvDependent
structure, which then is associated with the Pdv driver handle and persists across process calls. The values
it sets are then set on the CLS board by calling the function pdv_cls_set_dep (defined in the library file
clsim_lib.c). This function in turn calls a number of other functions to set individual registers on the board.

These same functions are available for you to modify for your own application; function prototypes are in
clsim_lib.h.

For camera configuration, EDT provides two types of files: 1) camera-specific files for numerous camera
models; and 2) generic (generic*cl.cfg) templates that you can use to create your own files if desired.
Camera configuration files are described in the EDT camera configuration guide (see Related Resources
on page 7). For simulator-specific details, see Simulator-specific Configuration File Directives on page 17.

To initialize the CLS with a specific camera configuration file, run clsiminit as follows...
clsiminit -f camera_config/filename.cfg

For example, to simulate the Basler Aviator 1000 camera, freerun at 8 bits, enter...

clsiminit -f camera_config/basler_ava1000-120km_8f.cfg

The CLS then will simulate the specified camera, according to the directives in the file.

CLS Initializing the Board

EDT, Inc. 2014 November 10 16

Options for clsiminit
For a complete list of command line options, enter:

clsiminit --help

For example, you can specify such options as unit number, image list file, or number of buffers, as below.

-u unit The unit number of the CLS (by default, 0).

-B Do not load the FPGA configuration file.

-q Disables program output (quiet mode).

-s Sets the CLS so that data comes from the internal counter instead of DMA.
Data comes from a simple counter that generates 16-bit pixels that start
black and grow progressively lighter until they reach white.

-C Sets the first 16-bit word of every frame to the value of a hardware counter
which increments by 1 every frame.

-l Lowercase “l” – enables UART loopback; serial received by the simulator
will be looped back out (echoed) to the device.

-F freq Sets the pixel clock in MHz; takes a floating point argument (by default,
20.0).

-t taps Sets the number of taps.

-f config_file Use the specified camera configuration file to set image parameters.

-w width Image width (by default, 1024). Overridden by values specified in a camera
configuration file specified with -f.

-h height Image height (by default, 1024). Overridden by values specified in a
camera configuration file specified with -f.

-d depth Image depth (by default, 8). Overridden by values specified in a camera
configuration file specified with -f.

-v vblank Sets the interval between frames in lines (by default, 400).

-V VcntMax Sets the total number of lines in the frame (ignored if vblank is specified
instead with -v).

-g hblank Sets the number of pixel clock cycles of horizontal blanking (by default,
300).

-H HcntMax Sets the total number of pixel clock cycles per line, including blanking
(ignored if hblank is specified instead with -g).

-r Resets the board. Zeroes all settings.

--help Prints complete and current list of all directives and arguments.

CLS Initializing the Board

EDT, Inc. 2014 November 10 17

Simulator-specific Configuration File Directives
To specify simulator-specific directives, copy any camera configuration file and add the desired directives
to your copy. Be sure also to edit the camera information directives (those starting with camera_) to provide
a unique identifier, in case you later have to choose your configuration file from a list of several in an
initialization application. (You can still use the same configuration file to configure an EDT frame grabber for
a specific camera, as simulator-specific directives will be ignored.)

The first directive takes a floating point number:

cls_pixel_clock pixel clock frequency, in MHz (20.0 – 85.0)

The next set are all single-bit directives that default to 0:

cls_linescan 1 enables linescan

cls_lvcont 1 enables continuous line valid

cls_rven 1 enables using the read-valid values

cls_uartloop 1 enables serial loopback

cls_smallok 1 enables small image sizes

cls_intlven 1 enables interleave (requires specifying the line_interleave directive,
below)

cls_firstfc 1 puts the frame count in the first word of each frame

cls_datacnt 1 uses internal counters rather than DMA

cls_dvskip number of clock cycles to skip between data-valid high

cls_dvmode 1 enables data-valid mode

cls_led 1 lights LED

cls_trigsrc 1 selects CC2 as the trigger source (0 selects CC1)

cls_trigpol 1 selects falling edge for trigger polarity

cls_trigframe 1 enables frame-valid triggering

cls_trigline 1 enables line-valid triggering

cls_filla byte value to use for left margin

cls_fillb byte value to use for right margin

One of the next two should be set – but not both, as they are redundant. If hgap is set, its value is preserved
even if the total clock cycles per line changes; thus, horizontal active time must change instead.

cls_hgap extra clock cycles per line to add to defined image width

cls_hcntmax total clock cycles per line

One of the next two should be set – but not both, as they are redundant. If vgap is set, its value is preserved
even if the total lines per frame changes; thus, vertical active time must change instead.

cls_vgap lines between active video

cls_vcntmax total lines per frame

The next values are all in pixel clock cycles. If they are not set, they default to a start value of 0 and end
value equal to width:

cls_hfvstart where frame valid starts on first line

cls_hfvend where frame valid ends on last line

CLS Sending Simulated Data

EDT, Inc. 2014 November 10 18

cls_hlvstart where line valid starts relative to frame

cls_hlvend where line valid ends

cls_hrvstart where DMA data starts

cls_hrvend where DMA data ends

To set the simulator interleave, set the line_interleave directive: a string in which the first value is the
number of taps (as of this release, required to be four), followed by a start, delta pair for each tap. For
example, the following line specifies four taps, the first one starting at pixel 0, the next at pixel 1024, the next
at pixel 2048, and the final one at pixel 3072, with each tap incrementing by one:

line_interleave:"4 0 1 1024 1 2048 1 3072 1"

For details on how to simulate multi-tap cameras and how to use negative values to simulate cameras that
implement taps moving from right to left, see Interleaving Registers on page 37.

NOTE With an EDT frame grabber, this same interleave value is then used for deinterleaving within pdvshow.

Sending Simulated Data
On a CLS board, simulated data can come from an internal counter, or from the host via DMA. In all cases,
the data is output at the configured pixel clock speed.

Image Data From Internal Counter
Counter data comes from an internal counter that generates 32-bit pixel data: the 16 least significant bits
start from 0x0000 and count up to 0xFFFF; the 16 most significant bits are an inverted version of these
values. The count is cleared to zero at the start of each frame.

When functioning in base mode, the CLS transmits only the 24 last significant bits of these 32-bit data words
to the frame grabber. Thus, the first word of each frame received by a base-mode frame grabber is
0xFF0000 and the second is 0xFE0001; for medium- or full-mode simulation, the first word of each frame
is 0xFFFF0000 and the second is 0xFFFE0001. .

Channel 0 passes the 24 least significant bits; if functioning in medium- or full-mode, the eight most
significant bits are transmitted on Camera Link port D out of channel 1.

This simulated data is useful for testing the cable, hardware, or DMA. Because data does not come from
the host, no DMA transfer is involved.

Image Data From Host Via DMA – with simple_clsend
As an alternative to using an internal counter, you can send image data from the host via DMA.

The simple_clsend demonstration application shows how to use the EDT library to send images (up to
4096 pixels wide by 15,000 lines) through the CLS. The program reads a list of images and sends each one
through the simulator. Although simple_clsend supports only TIF images, the EDT source code includes
stubs for other image formats, some of which will be populated in future versions. You can use these stubs
to modify the application to support other file formats as desired.

Before running simple_clsend, you must first initialize the CLS using clsiminit or clsim. For details,
see Initializing the Board on page 15.

CLS Sending Simulated Data

EDT, Inc. 2014 November 10 19

The simplest method of running simple_clsend is to run it with no arguments:
C:\EDT\pdv> simple_clsend

The simple_clsend application looks in the file imagelist.txt (by default, in the current directory) and
reads in a list of image filenames, one per line, to send through the CLS. The application recognizes only
the filename (which is the first word on each line, unless it is a comment line) and ignores everything else,
including comments (which begin with #) and the tags designed for use by send_tiffs, described in
send_tiffs image list format on page 20. The application then opens the default unit 0 board (which it expects
to be the CLS), and then loops through the list of images one at a time, sending each image to that board.

NOTE In your EDT installation package, the application pciload can be used to display a list of all boards
(with unit numbers) installed in the host, or in some cases to update or reprogram your board’s firmware.
For details, consult the EDT user’s guide for your frame grabber (see Related Resources on page 7).

You can specify options such as unit number, image list file, or number of buffers. For a complete list of
command line options, enter...

simple_clsend --help

-u unit The unit number of the CLS (by default 0).

-N numbufs The number of ring buffers to use. We recommend using four.

-i file The input file with list of images and directives — by default,
imagelist.txt in the current directory, but this option allows you to
specify another file.

-l loops The number of times to loop through the image list (0 to loop indefinitely).

For example, to instruct the program to use ten DMA buffers, enter:
simple_clsend -N 10

To instruct the program to look in the file named list1.txt for the list of images:
simple_clsend -i list1.txt

For example, to loop through the imagelist.txt twenty times, enter:
simple_clsend -l 20

Image Data From Host Via DMA – with send_tiffs
The send_tiffs demonstration application shows how to use the EDT library to send images (up to 4096
pixels wide by 15,000 lines) through the CLS. The program reads a list of images and sends each one
through the simulator.

NOTE Unlike simple_clsend, send_tiffs has no stubs to support image formats besides TIF, and it
includes functionality that is rarely used. Therefore, EDT recommends using simple_clsend instead
whenever possible, and using send_tiffs only if you have a specific reason to do so.

Before running send_tiffs, you must first initialize the CLS using clsiminit or clsim. For details, see
Initializing the Board on page 15.

The simplest method of running send_tiffs is to run it with no arguments:
C:\EDT\pdv> send_tiffs

The send_tiffs application looks in the file imagelist.txt (by default, in the current directory) and
reads in a list of TIF images to send through the CLS. The format of the list is given below in detail (see
send_tiffs image list format on page 20), but it can be a simple list of filenames, one per line.

CLS Sending Simulated Data

EDT, Inc. 2014 November 10 20

The application then opens the default unit 0 board (expected to be the CLS), and then loops through the
list of images one at a time, sending each image to that board.

NOTE In your EDT installation package, the application pciload can be used to display a list of all boards
(with unit numbers) installed in the host, or in some cases to update or reprogram your board’s firmware.
For details, consult the EDT user’s guide for your frame grabber (see Related Resources on page 7).

For a complete list of command line options, enter...
send_tiffs --help

Specific options such as unit number, image list file, or number of buffers are shown below.

-u unit The unit number of the CLS (by default, 0).

-N numbufs The number of ring buffers to use. We recommend using four.

-i file The input file with list of images and directives — by default,
imagelist.txt in the current directory, but this option allows you to
specify another file.

-t images The number of images to send – used to send only some of the images in
the image list (cannot be greater than the number of images in the image
list).

-A FillA Set the left fill value to FillA.

-B FillB Set the right fill value to FillB.

For example, to instruct the program to use ten DMA buffers, enter:
send_tiffs -N 10

To instruct the program to look in the file named list1.txt for the list of images:
send_tiffs -i list1.txt

And, for example, if imagelist.txt lists 2000 images, of which you wish to send only the first twenty,
enter:

send_tiffs -t 20

send_tiffs image list format
Each line of the image list file contains either a comment, or the name of an image file (followed, optionally,
by certain information about that file). A sample file at the end of this section illustrates the format.

Comments begin with #, so whenever send_tiffs sees that symbol, it ignores the rest of the line.
Otherwise, the first string of characters up to a space character specifies the name of a TIF image. The
filename is the only required information, but other values also can be specified in the following manner:

• Values are always numeric, specified in either decimal or hexidecimal. To use hexidecimal, precede the
number with the string 0x.

• The value must follow immediately after the directive, with no space in between.

• Directive names are not case-sensitive; FillA is treated the same as filla.

• For any image file listed, values not specified are taken from the last line on which they were specified
or (if they were specified nowhere) from the program defaults as described for each directive.

FillA:value

Sets the fill value for the left margin of the image. A value of –1 instructs the program to use the pixel value
found in the first pixel of the first line in the image as the margin value.

CLS Sending Simulated Data

EDT, Inc. 2014 November 10 21

FillB:value

Sets the fill value for the right margin of the image. A value of –1 instructs the program to use the pixel value
found in the last pixel of the first line in the image as the margin value.
hStart:value

Specifies where in the frame to place the pixels from the image file. For example, the line image.tif
hStart:600 places the first pixel of image.tif 600 pixels into the camera’s image frame.

If hStart is not specified, the default behavior centers the image file within the camera's image. That
behavior can be specified manually by setting hStart to –1. (To change this default, search for
DEFAULT_HSTART in the send_tiffs.c source code and edit the value as required.)
vgap:value

Specifies how much vertical gap to leave between the current image and the next image. If left unspecified,
the default value is 400 clock cycles. (To change this default, search for DEFAULT_VGAP in the
send_tiffs.c source code and edit the value as required.)

For example, a file such as the following could be used to test different values for vgap...
image1.tiff filla:0xff fillB:0xff vgap:400
image2.tiff filla:0xff fillB:0xff vgap:300
image3.tiff fillA:0x1f fillb:255 vgap:100 hStart:600
image4.tiff

Given such a file, the CLS will send image4.tiff with the fillA, fillB, vgap and hstart values
used for image3.tiff in the previous line.

send_tiffs code overview
The application send_tiffs uses functions defined in clsim_lib.c and clsim_lib.h; for details, see
those two files, as well as the EDT API (see Related Resources on page 7).

First, send_tiffs parses the command line arguments, gets the list of images, and performs some initial
setup, such as creating the EDT ring buffers and getting the simulated camera's size (as set by clsiminit).

Next, send_tiffs preloads all but the last ring buffer with the first images from the image list.

The main loop of the program has only four things to do:

1. Start DMA to send the image data to the simulator.

2. Set up the simulator for the next image to send.

3. Get another image from the list and load it into the buffer that just finished being sent to the simulator.

4. Wait for the image that started sending at step 1.

The settings for an image, such as width and height, can be set on the simulator any time before the
simulator begins sending that image — that is, any time before the simulator sets frame-valid high.

The setup required in step 2 uses the EDT library Event system to ensure that an image is never missed:
edt_set_event_func(pdv_p,

 EDT_PDV_EVENT_FVAL,
 (EdtEventFunc)setup_clsim_event,
 &cbinfo, 1);

This code registers the function setup_clsim_event, which is then called when the driver receives an
interrupt notifying it that frame-valid went high. Therefore, as soon as frame valid goes high, it is possible to
set up the simulator for the next image, and that is what setup_clsim_event does.

CLS Firmware

EDT, Inc. 2014 November 10 22

Figure 4 shows the relative timing of DMA, frame-valid, and image-loading. As indicated by the arrows,
setup for the next image occurs on the rising edge of the frame-valid signal.

Figure 4. Timing of DMA, image setup, and image loading

DMA starts with the program's call to edt_start_buffers(pdv_p, 1). After the CLS has 16 KB of data,
it starts sending data to the frame grabber. At the same time it sends the FVAL interrupt to the driver, which
in turn calls setup_clsim_event. Immediately after the program calls edt_start_buffers, it loads the
next image into the buffer most recently sent (so the buffer being loaded is just behind the buffer being sent).

NOTE To ensure maximum speed, image loading must take less time than the DMA transfer.

Firmware
The CLS boards have FPGAs containing two types of logic: PCI / PCIe interface logic, and image data logic.

On the PCI version, the two types of logic reside in two FPGAs: a PCI FPGA for PCI interface logic, and a
user interface (UI) FPGA for image data logic. The first loads automatically at power-on; the second must
be loaded after power-on, using the automatic initialization application clsiminit.

On the PCIe version, both types of logic reside in one FPGA, which loads automatically at power-on.

NOTE Logically, the single FPGA on the PCIe version still operates as two FPGAs (a PCIe FPGA for the PCIe
interface logic and a UI FPGA for the image data logic), just like the two FPGAs on the PCI version.

At times, you may need to reprogram the PCI / PCIe interface flash memory using pciload – for instance:

• if you want to convert an EDT simulator into a frame grabber, or vice versa;

• if you want to switch from one Camera Link mode to another;

• if you need to use an FPGA configuration file that has special functionality;

• if you upgrade to a new installation package that includes a required update for your board; or

• if the firmware becomes corrupted.

To do so, follow the instructions in the sections below.

NOTE For details on using the CLS as a frame grabber, consult the EDT user’s guide for current Camera Link
PCIe frame grabbers (see Related Resources on page 7).

Checking and Loading the Firmware
The following procedure applies to standard firmware only. If you are running a custom firmware file and
need to update it, first get a custom firmware configuation file from EDT.

NOTE Do not upgrade the firmware simply because you see a newer firmware file with a new driver; instead,
consult the CHANGELOG_PDV.txt file in the package, which will tell you if there is a necessary upgrade.

DMA

frame-valid

image-loading

setup for next image

CLS Firmware

EDT, Inc. 2014 November 10 23

• For Windows, pciload is an application in \EDT\Pdv. Double-click the Pdv Utilities icon to bring up a
command shell in the installation directory \EDT\Pdv.

• For Linux or Mac OS X, pciload is an application in /opt/EDTpdv.

To see currently installed and recognized EDT boards and firmware, enter...
pciload

The program outputs the date and revision number of the firmware in the flash memory.

To compare the PCI / PCIe firmware in the package to the firmware loaded in flash on the board, enter...
pciload verify

If the two match, the firmware on the board is the same as the firmware in the installation package. If they
differ, you’ll see error messages, but these do not necessarily indicate problems; if your application is
working correctly, you probably do not need to upgrade the firmware.

If you do wish to update the standard firmware, enter...

pciload update

To upgrade or switch to a specific firmware file, enter...

pciload firmware

...replacing firmware with the filename of the desired firmware, up to but not including the .bit extension.

Example: To load simulator firmware for base or medium mode on a PCIe8 DVa CLS board, enter...

pciload pe8dvaclsim

The board reloads the firmware from the flash memory only during power-on – so after running pciload,
the old firmware is in the PCIe FPGA until the system has power-cycled.

NOTE After loading the firmware, you must do a power cycle (not just a reboot) to complete the update.

For a list of all pciload options, see the tables below or enter:

pciload --help

Table 3 and Table 4 show the FPGA configuration files for the CLS boards. For details on verifying and re-
flashing your board, consult the Firmware section of the EDT user’s guide for current Camera Link PCIe
frame grabbers (see Related Resources on page 7).

NOTE Firmware files are not interchangeable. For current boards (with “DVa” in their names), use only
Table 3; for legacy boards (with “DV” but no “a” in their names), use only Table 4.

Also, EDT recommends using firmware not ending in _fm (for full mode) whenever possible; but if you
are switching just one board between full and other modes, you can use the _fm firmware with one
base- or medium-mode camera of 40 MHz or more.

Table 3. Current (“DVa”) board: Arguments to pciload

To use this board... ...for these modes... ...use this command...

PCIe8 DVa CLS as simulator* Base, dual base pciload pe8dvaclsim

Base, medium, full pciload pe8dvaclsim_fm

PCIe8 DVa CLS as frame grabber Base, dual base, medium pciload pe8dvacamlk

Base, medium, full pciload pe8dvacamlk_fm

* When flashed as a frame grabber, the PCIe8 DVa CLS simulator becomes a fully functional PCIe8 DVa C-Link frame
grabber. For details, consult the appropriate EDT user’s guide (see Related Resources on page 7).

CLS Firmware

EDT, Inc. 2014 November 10 24

Corrupted Firmware
In rare cases, the board firmware may become corrupted. Typically, the symptom is that the board is not
recognized by the operating system, or the computer itself will not boot with the board in it. In such cases,
booting from the protected (backup) sector will allow the board to be seen so that you can reprogram the
programmable sector.

Each EDT frame grabber has a protected (backup) and a programmable flash memory boot sector. The
sector from which the board will boot is determined by a jumper, which is preset to the programmable sector.
If that sector becomes corrupted, you can move the jumper so the board will boot from the protected sector.

Most often, firmware corruption is the result of an interrupted load process or an unanticipated interaction
with the host computer; if so, following the procedure below should solve the problem.

If the firmware file itself has become corrupted, first contact EDT for the current firmware you’ll need to
replace it, and then follow this procedure.

To reboot from the protected sector:

1. If needed, move the new firmware file to the directory in which you installed the EDT software.

2. Power off the host and board.

3. To avoid later confusion, remove any other EDT boards from the host.

4. On the EDT board with the corrupted firmware, move the jumper from its programmable to its protected
setting (to locate this setting on your board, see Firmware on page 22).

5. Power up the host and board.

6. Navigate to the directory in which you installed the EDT software.

7. At the command prompt, enter...

pciload

The program outputs the date and revision number of the firmware in the flash memory — in this case,
the date and revision number that shipped as of your purchase date. If no errors are reported, you have
successfully booted from the protected sector.

8. With the system still powered on, move the jumper back to its original position.

9. Enter...

pciload firmware

...replacing firmware with the correct filename, as indicated in Table 3 and Table 4 (above). If the
feedback shows no errors, the new firmware has been installed, although it is not yet running.

Table 4. Legacy (“DV”) boards: Arguments to pciload

To use this board... ...for these modes... ...use this command...

PCIe8 DV CLS as simulator* Base, dual base pciload pe8dvclsim

Base, medium, full pciload pe8dvclsim_fm

PCIe8 DV CLS as frame grabber Base, dual base, medium pciload pe8dvcamlk2

Base, medium, full pciload pe8dvcamlk2_fm

PCI DV CLS as simulator only Base (either 24-bit RGB; or 8-bit, 1- or 2- tap)
or medium (8-bit, 4-tap)

pciload dvcl4

* When flashed as a frame grabber, the PCIe8 DV CLS simulator becomes a fully functional PCIe8 DV C-Link frame
grabber. For details, consult the appropriate EDT user’s guide (see Related Resources on page 7).

CLS Firmware

EDT, Inc. 2014 November 10 25

10. Power off the host and board again.

11. Power on the system.

12. Run pciload with no arguments to verify the board is recognized and is running with the new firmware.

CLS Firmware

EDT, Inc. 2014 November 10 26

Appendix A: Pin Assignments
This section shows the pin assignments for the Camera Link connectors and the debug connector.

Camera Link (MDR26) Connectors
The Camera Link (MDR26) connector pin assignments for various operating modes are shown below.
Camera or
simulator
end

Frame grabber
end

Camera Link signal
(base mode,
primary connector)

Camera Link signal
(medium mode,
secondary connector)

Camera Link signal
(full mode,
secondary connector)

1* 1* inner shield / ground* inner shield / ground* inner shield / ground*

14* 14* inner shield / ground* inner shield / ground* inner shield / ground*

2 25 X0– Y0– Y0–

15 12 X0+ Y0+ Y0+

3 24 X1– Y1– Y1–

16 11 X1+ Y1+ Y1+

4 23 X2– Y2– Y2–

17 10 X2+ Y2+ Y2+

5 22 Xclk– Yclk– Yclk–

18 9 Xclk+ Yclk+ Yclk+

6 21 X3– Y3– Y3–

19 8 X3+ Y3+ Y3+

7 20 SerTC+ unused 100 ohms

20 7 SerTC– unused terminated

8 19 SerTFG– unused Z0–

21 6 SerTFG+ unused Z0+

9 18 CC1– unused Z1–

22 5 CC1+ unused Z1+

10 17 CC2+ unused Z2–

23 4 CC2– unused Z2+

11 16 CC3– unused Zclk–

24 3 CC3+ unused Zclk+

12 15 CC4+ unused Z3–

25 2 CC4– unused Z3+

13* 13* inner shield / ground* inner shield / ground* inner shield / ground*

26* 26* inner shield / ground* inner shield / ground* inner shield / ground*

* For PoCL, pins 1 and 26 change to +12V DC power, while pins 13 and 14 change to +12V DC power return.
For details on using PoCL, consult the EDT user’s guide for Camera Link PCIe frame grabbers (see Related Resources on page 7).

CLS Firmware

EDT, Inc. 2014 November 10 27

Debug Connector
On the PCI version of the CLS board, near the upper edge, there is a 2- by 10-pin connector labeled
DEBUG, with test points soldered into it.

The pin assignments and test points are shown below.

The PCIe version of the board has the same DEBUG connector, but it is fully configurable. In addition, near
the center of the PCIe board there are four assigned debugging pins labeled PCLK (pixel clock), FVAL
(frame valid), DVAL (data valid), and LVAL (line valid), as shown in Figure 2 on page 6.

PINS: TEST POINTS: Pin Signal Notes

2 4 6 8 10 12 14 16 18 20 1 ground

1–6 are driven as
2.5-volt CMOS
signals directly
from the UI
FPGA.

O O O O O O O O O O 2 ground

O O O O O O O O O O 3 line valid

1 3 5 7 9 11 13 15 17 19 4 frame valid

5 data valid

6 pixel clock

7–20 [undefined]

CLS Firmware

EDT, Inc. 2014 November 10 28

Appendix B: Registers
Your EDT installation package provides files for accessing the registers described below. The EDT driver
on the host computer uses the registers implemented in the user interface (UI) FPGA to configure the
simulated data.

The FPGA configuration file clsim.bit in the PCI version of the CLS (or the embedded equivalent in the
PCIe version) defines these types of registers:

• Camera Link registers;

• simulator registers;

• timing registers; and

• interleaving registers.

In the descriptions below, a bit is set when its value is one, and clear when its value is zero. Unused bits
are undefined when read; if your application writes to them, write them as zero.

Camera Link Registers

0x00 Command

0x01 Status

Access / Notes: 8-bit, write-only / PDV_CMD

Always reads 0x02.

Bit Name Description

7–5 [no name] Not used.

4 CLRFVINT Clear FVINTSTAT in 0x0B Serial Data Status. Acts on one write and need not be cleared.

3–1 [no name] Not used.

0 RESET_INTFC Reset frame-valid interrupt. Acts on one write and need not be cleared.

Access / Notes: 8-bit, read-only / PDV_STAT

Bit Name Description

7–5 [no name] Not used.

4 FIFO_NOTEMPTY Set when FIFO contains data from the DMA stream.

3–2 [no name] Not used.

1 FRAME_VALID Set when the simulator asserts frame-valid to the frame grabber.

0 UNDERRUN Set if the FIFO has run out of DMA data.

CLS Firmware

EDT, Inc. 2014 November 10 29

0x02 Configuration

0x05 [Reserved]

0x07 Mode Control

0x0A Serial Data

0x0B Serial Data Status

Access / Notes: 8-bit, read-write / PDV_CFG

Bit Name Description

7–4 [no name] Not used.

3 FIFO_RESET Set to clear the simulator (FIFO, counters, all state bits and interrupts). Remains set until
explicitly cleared by the host.

2–0 [no name] Not used.

Access / Notes: This register address is reserved, and always returns zero.

Access / Notes: 8-bit, read-only / PDV_MODE_CNTRL

Bit Name Description

7–4 [no name] Not used.

3–0 CC[4–1] State of the four camera control lines from the frame grabber.

Access / Notes: 8-bit, read-write / PDV_SERIAL_DATA

Bit Name Description

7–0 [no name] When written, the byte is serialized and sent out to the frame grabber using the SERTFG
UART signal. Data from the frame grabber is deserialized and available for reading here,
using the SERTCAM UART signal.

Access / Notes: 8-bit, read-only / PDV_SERIAL_DATA_STAT

Handles UART signals and supports an interrupt on the rising edge of the frame-valid signal.

Bit Name Description

7 INTFC_INT Set when EN_GLOB_IN (in 0x0C Serial Data Control) is set and:

• FVINT is set, or

• TRANSMIT_RDY and EN_TX_INT (in 0x0C Serial Data Control) are both set, or

• RECEIVE_RDY and EN_RX_INT (in 0x0C Serial Data Control) are both set.

6 FVINTSTAT Set when the rising edge of a frame-valid is detected. Cleared by CLRFVINT or
RESET_INTFC in the Camera Link Registers registers (0x00 – 0x28).

CLS Firmware

EDT, Inc. 2014 November 10 30

0x0C Serial Data Control

0x0F Utility

Figure 5. Data Word Structure Without Swapping

5 [no name] Not used.

4 FVINT Set when FVINTSTAT and ENFVINT (in 0x10 Utility 2) are both set.

3–2 [no name] Not used.

1 TRANSMIT_RDY Set when UART transmitter is holding the register ready for the next byte to be written to it.

0 RECEIVE_RDY Set when UART receiver has a character available for reading.

Access / Notes: 8-bit, read-write / PDV_SERIAL_DATA_CNTL

Handles UART signals and global interrupt enable.

Bit Name Description

7–6 BAUD[1–0] If the value in 0x24 Baud Rate is zero, sets the baud rate:

00 9600
01 19,200
10 38,400
11 115,200

5 CL_RECEIVE_RDY Set to clear RECEIVE_RDY in 0x0B Serial Data Status.

4 EN_GLOB_INT Global interrupt enable. Set to enable any interrupt; when clear, interrupt bits have no effect.

3 EN_TX_INT Set to enable interrupt on UART transmit buffer empty.

2 EN_RX_INT Set to enable interrupt on UART receive buffer full.

1 EN_TX Set to enable the UART transmitter.

0 EN_RX Set to enable the UART receiver.

Access / Notes: 8-bit, read-write / PDV_UTILITY

Accommodates a big-endian host. The PCI / PCIe bus and EDT boards are little-endian.

Bit Name Description

7–4 [no name] Not used.

3 SSWAP Swaps the position of the two 16-bit short words in one 32-bit data word, so that short 2 is
transferred before short 1. Does not change the order of the bits within each short. See
Figure 5 for details of the data word structure.

2–1 [no name] Not used.

0 BSWAP Swaps the position of bytes 0 and 1, and also bytes 3 and 4, in a 32-bit data word, so that
the bytes are positioned 1, 0, 3, 2. Does not change the position of the bits within each byte.

Figure 5 shows the structure of a 32-bit data word, with no swapping. With SSWAP set, short
0 appears before short 1. With BSWAP set, byte 2 appears before byte 3, and byte 0 before
byte 1. With both set, byte 0 appears first, followed by byte 1, byte 2, and finally byte 3.

short 0 short 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

byte 0 byte 1 byte 2 byte 3

CLS Firmware

EDT, Inc. 2014 November 10 31

0x10 Utility 2

0x20 PLL Programming

0x24 Baud Rate

0x28 Camera Link Data Path

Access / Notes: 8-bit, read-write / PDV_UTIL2

Bit Name Description

7–4 [no name] Not used.

3 ENFVINT Set to enable the frame-valid interrupt.

2–0 [no name] Not used.

Access / Notes: 8-bit, read-write / PDV_PLL_CTL

Used to load the MPC9230 PLL clock generator to create a 3.5x pixel clock signal that can match all pixel
clocks evenly divisible by 0.0625 between 20 and 32 MHz, all frequencies divisible by 0.125 between 32 and
64 MHz, and all frequencies divisible by 0.250 between 64 and 85 MHz.

Bit Name Description

7 PLL_CLOCK Connected to the PLL serial clock input.

6 PLL_DATA Connected to the PLL serial data input.

5–1 [no name] Not used.

0 PLL_STROBE Connected to the strobe input of the PLL.

Access / Notes: 8-bit, read-write / PDV_BRATE

Bit Name Description

7–0 BAUD_RATE Sets the baud rate. If this register is clear, then use BAUD[1–0] from 0x0C Serial Data
Control. The baud rate is computed from this value as follows:

(20MHz/(baud_rate*16))-2

For example, 0x80 = 9600 baud.

Access / Notes: 8-bit, read-write / PDV_CL_DATA_PATH

A value of 0x37 configures the CLS for a 4-tap 8-bit camera.

Bit Name Description

7 [no name] Not used.

6–4 TAPS Number of taps, minus 1 (0x0, 0x1, or 0x3 for one, two, or four taps, respectively).

3–0 BITS Number of bits per tap, minus 1 (0x07 for eight bits per tap).

CLS Firmware

EDT, Inc. 2014 November 10 32

Simulator Registers

0x40 Camera Link Configuration A
Access / Notes: 8-bit, read-write / PDV_CLSIM_CFGA

Bit Name Description

7 LINESCAN When set, once the start-of-frame conditions are met, the simulator runs forever, emulating
a linescan camera (as if 0x4A–4B Vertical Active and 0x4C–4E Vertical Count Maximum
were set to infinity).

When clear, frame-valid determines which rasters have active data.

6 LVCONT When set, line-valid is asserted continuously with its normal timing, even during the vertical
blanking interval between frames. When clear, line-valid remains low during vertical
blanking.

5 RVEN When set, the start and end margins of each raster are filled with the values from 0x44 FillA
and 0x46 FillB respectively, and the positions of the margins are determined by 0x58–59
Horizontal Read Valid Start and 0x5A–5B Horizontal Read Valid End.

When clear, the entire raster is filled with valid data.

4 UARTLOOP When set, serial data emitted by the frame grabber is echoed back unchanged, enabling a
test of the frame grabber’s serial port.

When clear, your camera simulator application could respond to serial commands over the
UART.

3 SMALLOK When set, simulator starts DMA when 1 KB of data is in FIFO, allowing the simulator to
handle images smaller than 16 KB.

When clear, simulator waits until 16 KB of data is in FIFO before starting DMA.

2 INTLVEN When set, enables four-tap interleaving — the four-tap reordering of 8-bit pixel values —
using the registers 0x60–61 Tap 0 Start through 0x6E– 6F Tap 3 Delta. Image data destined
for the frame grabber is first passed through an interleaving mechanism to duplicate the data
ordering that some cameras exhibit. When interleaving is enabled, rasters are restricted to
a maximum of 4096 eight-bit pixels of active image data (DMA plus fill).

When clear, interleaving is off.

1 FIRSTFC When set, the first word of the frame is the frame count: a 16-bit flag of 0x3333 in the most
significant bits and a 16-bit framecount in the least significant bits. It replaces the first 32-bit
word of DMA data for each frame, after any interleaving.

When clear, the first word is DMA or counter data.

The FIFO_RESET bit in 0x02 Configuration initializes the framecount to 0x0001.

0 DATACNT When set, image data comes from the counters instead of the DMA stream.

The simulated 32-bit data generated has a 16-bit count in the least significant bits; the 16
most significant bits are an inverted version of the least significant bits.

The count is cleared to zero at the start of each frame. Thus, the first 32-bit word of each
frame is 0xFFFF0000, and the second is 0xFFFE0001. The CLS treats this data as little-
endian, so the fourth 8-bit pixel of the frame has a value of 0x01.

When set, also setting SMALLOK stops the simulator at the start of the next frame, to enable
getting a single frame of counter data.

When clear, simulator uses DMA data.

CLS Firmware

EDT, Inc. 2014 November 10 33

0x41 Camera Link Configuration B

0x42 Camera Link Configuration C

0x43 External Sync Delay

Access / Notes: 8-bit, read-write / PDV_CLSIM_CFGB

By default, all zero, resulting in a data-valid signal that is low during blanking and high during active video.

Bit Name Description

7–4 DVSKIP Number of pixel clocks skipped per data-valid strobe. When DVSKIP=7, data-valid is
asserted every eighth clock cycle. If 0x54–55 Horizontal Line Valid Start set to zero, the first
data-valid strobe lines up with start of line-valid.

When DVSKIP is zero, data valid is always high, except during blanking.

DVSKIP does not effect the timing of line-valid, frame-valid, or image data sent to the frame
grabber. Therefore, a DVSKIP value of 7 causes only one-eighth of the DMA data to be
captured by the frame grabber as valid image data; the rest is ignored.

3–0 DV MODE Camera manufacturers exhibit no consensus on how to treat the data-valid signal. DVMODE
allows most implementations to be simulated:

00 = data-valid low during blanking.

01 = data-valid high during blanking.

10 = data-valid is treated the same during blanking as during active video (so DVSKIP also
affects blanking).

11 = data-valid always low (may change in future revisions).

Access / Notes: 8-bit, read-write / PDV_CLSIM_CFGC

Set TRIGLINE to emulate a Dalsa camera’s EXSYNC trigger.

Bit Name Description

7 LED When set, turns on LED (visible only when host computer case is open).

6–4 [no name] Not used.

3 TRIGSRC When set, selects camera control line 2 as trigger source. When clear, selects camera
control line 1.

2 TRIGPOL When set, triggers on falling edge of signal. When clear, triggers on rising edge.

1 TRIGFRAME Set to enable frame-valid triggering — simulator waits at the start of each frame until a
trigger is detected.

0 TRIGLINE Set to enable line-valid triggering. Simulator waits at the start of each raster until a trigger is
detected. A Dalsa linescan camera starts the next raster when it detects a rising edge on the
CC1 line.

Access / Notes: 8-bit, read-write / PDV_CLSIM_EXSYNCDLY

Bit Name Description

7–0 [no name] Sets the amount of delay, in pixel clock cycles, from the trigger source specified in the 0x42
Camera Link Configuration C, when used for line-valid triggering. To any delay, add an
additional six pixel clock cycles of pipeline delay.

CLS Firmware

EDT, Inc. 2014 November 10 34

0x44 FillA

0x46 FillB

Timing Registers
A 16-bit binary counter — hcnt — establishes horizontal timing. It increments with each pixel clock cycle
until it reaches the maximum value specified by 0x48–49 Horizontal Count Maximum, after which it clears
to zero. Therefore, a value of 0x04FF in 0x48–49 Horizontal Count Maximum causes hcnt to count
repeatedly from 0x0000 to 0x04ff, for a raster period of 1280 pixel clock cycles.

The other timing signals are turned on and off by comparing specific register values with hcnt. For
example, when hcnt is equal to the 16-bit value in 0x54–55 Horizontal Line Valid Start, the line-valid strobe
is turned on. It is turned off again when hcnt is equal to the 16-bit value in 0x56–57 Horizontal Line Valid
End. Therefore, if 0x54–55 Horizontal Line Valid Start is set to 0x0000 and 0x56–57 Horizontal Line Valid
End to 0x0400, then the line-valid signal is on for 1024 pixel clock cycles.

The registers 0x58–59 Horizontal Read Valid Start and 0x5A–5B Horizontal Read Valid End turn on an
internal read-from-DMA signal. When read-from-DMA is true, image data to the frame grabber is taken from
the DMA data stream. When it is false, we use the values from 0x44 FillA and 0x46 FillB instead, for the left
and right margins respectively. If RVEN is false, read-from-dma follows line-valid.

NOTE Margins are constrained to be on a pixel clock boundaries, so the number of bytes per raster for images
sent through the DMA channel must be evenly divisible by the number of 8-bit taps being simulated. We
recommend that images sent to the simulator have rasters that are an even multiple of four pixels long.

Frame-valid starts on the first raster of the frame, then remains high until the final raster of the frame, as
determined by 0x4A–4B Vertical Active. However, frame-valid can start at the beginning of the first raster,
or some number of pixel clock cycles into the first raster; likewise, frame-valid can remain asserted until the
very end of the last raster, or go low some number of pixel clock cycles before the very end of the last raster.
The registers 0x50–51 Horizontal Frame Valid Start and 0x52–53 Horizontal Frame Valid End determine
the position within the first and last raster that the frame-valid signal starts and ends, respectively.

When the simulator is configured and ready for data, and sufficient data (by default, 16 KB, or 1 KB if
SMALLOK is set) is in the FIFO, the frame-valid signal is turned on within that raster at the position
determined by 0x50–51 Horizontal Frame Valid Start. During that same raster, a 24-bit counter called vcnt
is zeroed, and then increments at the end of each raster. When the 16 least significant bits of vcnt are
equal to the value in 0x4A–4B Vertical Active, then frame-valid is turned off during that raster at the position
determined by 0x52–53 Horizontal Frame Valid End. When vcnt is equal to the 24-bit value in 0x4C–4E
Vertical Count Maximum, the simulator is ready to start the next frame on the following raster (assuming
that sufficient DMA data is available). Thus, the value in 0x4C–4E Vertical Count Maximum plus one is the
number of rasters spent on a given image, including active rasters and rasters spent in vertical blanking.

Access / Notes: 8-bit, read-write / PDV_CLSIM_FILLA

Bit Name Description

7–0 [no name] Fills any margin at the start of each raster, as determined by 0x58–59 Horizontal Read Valid
Start.

Access / Notes: 8-bit, read-write / PDV_CLSIM_FILLB

Bit Name Description

7–0 [no name] Fills any margin at the end of each raster, as determined by 0x5A–5B Horizontal Read Valid
End.

CLS Firmware

EDT, Inc. 2014 November 10 35

The value of 0x4C–4E Vertical Count Maximum must exceed or equal that of 0x4A–4B Vertical Active. If
the values are equal, then consecutive frames are butted together with zero rasters spent in vertical
blanking. In this case, the frame-valid signal is low for vertical blanking for only part of a raster.

By default, 0x54–55 Horizontal Line Valid Start is set to 0x0000. Thus, the line-valid signal is asserted at
the earliest possible time. To simulate most cameras, 0x50–51 Horizontal Frame Valid Start is also set to
0x0000, so frame-valid rises coincident with line-valid. If frame-valid needs to rise prior to line-valid:

1. Add one to the value of the 0x4A–4B Vertical Active.

2. Set the value of 0x50–51 Horizontal Frame Valid Start to a value between that of 0x56–57 Horizontal
Line Valid End and 0x48–49 Horizontal Count Maximum, inclusive.

0x48–49 Horizontal Count Maximum

0x4A–4B Vertical Active

0x4C–4E Vertical Count Maximum

0x50–51 Horizontal Frame Valid Start

Access / Notes: 16-bit, read-write / PDV_CLSIM_HCNTMAX

Bit Name Description

15–0 [no name] The raster period, in pixel clock cycles (including blanking minus one). If, for example, you
set this register to 0x04FF, the line period is 1280 pixel clock cycles.
0x48 contains the least significant bits; 0x49 contains the most significant bits.

Access / Notes: 16-bit, read-write / PDV_CLSIM_VACTV

Bit Name Description

15–0 [no name] The number of active rasters displayed, minus one.
For example, with a value of of 0x1FF, 512 lines are displayed.
0x4A contains the least significant bits; 0x4B contains the most significant bits.

Access / Notes: 24-bit, read-write / PDV_CLSIM_VCNTMAX

Bit Name Description

23–0 [no name] The total number of rasters per frame period, minus one. For example, with a value of
0x2FF, there are 768 rasters from the start of one frame to the start of the next, assuming
DMA data is available and frame triggering is not used.
0x4C contains the least significant bits; 0x4E contains the most significant bits.

Access / Notes: 16-bit, read-write / PDV_CLSIM_HFVSTART

Bit Name Description

15–0 [no name] The horizontal position within the raster where the frame-valid signal starts.
Frame-valid signal usually stays high for many rasters between its start and end.
0x50 contains the least significant bits; 0x51 contains the most significant bits.

CLS Firmware

EDT, Inc. 2014 November 10 36

0x52–53 Horizontal Frame Valid End

0x54–55 Horizontal Line Valid Start

0x56–57 Horizontal Line Valid End

0x58–59 Horizontal Read Valid Start

0x5A–5B Horizontal Read Valid End

Access / Notes: 16-bit, read-write / PDV_CLSIM_HFVEND

Bit Name Description

15–0 [no name] The horizontal position within the raster where the frame-valid signal ends.
Frame-valid signal usually stays high for many rasters between its start and end.
0x52 contains the least significant bits; 0x53 contains the most significant bits.

Access / Notes: 16-bit, read-write / PDV_CLSIM_HLVSTART

Bit Name Description

15–0 [no name] The position within the raster where the line-valid signal starts.
0x54 contains the least significant bits; 0x55 contains the most significant bits.

Access / Notes: 16-bit, read-write / PDV_CLSIM_HLVEND

Bit Name Description

15–0 [no name] The position within the raster where the line-valid signal ends.
0x56 contains the least significant bits; 0x57 contains the most significant bits.

Access / Notes: 16-bit, read-write / PDV_CLSIM_HRVSTART

Bit Name Description

15–0 [no name] The position within each raster where the internal read-from-DMA signal starts.
0x58 contains the least significant bits; 0x59 contains the most significant bits.

Access / Notes: 16-bit, read-write / PDV_CLSIM_HRVEND

Bit Name Description

15–0 [no name] The position within each raster where the internal read-from-DMA signal end.
0x5A contains the least significant bits; 0x5B contains the most significant bits.

When read-from-DMA is false, then data is taken from the FillA or FillB registers instead of
from the DMA stream (or instead of from the simulated data counter, if DATACNT in the
0x40 Camera Link Configuration A is true).

If RVEN=0 in 0x40 Camera Link Configuration A, then both 0x58–59 Horizontal Read Valid
Start and 0x5A–5B Horizontal Read Valid End are ignored and read-from-DMA is true
whenever line-valid is true.

CLS Firmware

EDT, Inc. 2014 November 10 37

Interleaving Registers
When interleaving is enabled (that is, when bit 2 of 0x40 Camera Link Configuration A is set):

• Image data destined for the frame grabber is first passed through an interleaving mechanism to dupli-
cate the data ordering of cameras with multiple taps.

• Rasters are restricted to a maximum of 4096 eight-bit pixels of active image data (DMA, FillA, and FillB).
Though the interleaving registers are 16-bit registers, the top four bits of each interleaving register are
unused, as only twelve bits are required to address 4096 pixels.

Interleaving is always treated using a four-tap model. Each tap has two registers: one specifies the starting
pixel address within the raster, and the other specifies the delta to add to the pixel address with each pixel
clock. This delta is a two’s-complement signed integer, permitting negative values that fill rasters from the
rightmost edge and work leftward. The four-tap model can be configured to give the same transform as a
two-tap model, as in the examples below.

The interleaving registers are shown below.

0x60–61 Tap 0 Start

0x62–63 Tap 0 Delta

Table 5. Interleaving: Two- and four-tap simulation

Two taps (to fill from starting points)
To simulate a two-tap camera that fills a
1024-pixel raster line with tap 1 starting at
pixel 0 and tap 2 at pixel 512, each filling
pixels consecutively from its starting point,
use these starting points and deltas:

Four taps

Similarly, to emulate a
four-tap model, use these
starting points and deltas:

Two taps (to fill from both ends)
To simulate a two-tap camera that
fills in rasters from either end, with
one tap working rightward from
pixel 0 and the other working
leftward from pixel 1023, use these
starting points and deltas:

Start Delta Start Delta Start Delta

Tap 0 0 1 Tap 0 0 2 Tap 0 0 +2

Tap 1 512 1 Tap 1 512 2 Tap 1 1023 –2

Tap 2 1 2 Tap 2 1 +2

Tap 3 513 2 Tap 3 1022 –2

Access / Notes: 16-bit, read-write / PDV_CLSIM_TAP0START

Bit Name Description

15–0 [no name] The starting 8-bit pixel address within the 4096-pixel raster.
0x60 contains the least significant bits; 0x61 contains the most significant bits.

Access / Notes: 16-bit, read-write / PDV_CLSIM_TAP0DELTA

Bit Name Description

15–0 [no name] The delta added to the starting pixel address with each pixel clock cycle.
0x62 contains the least significant bits; 0x63 contains the most significant bits.

CLS Firmware

EDT, Inc. 2014 November 10 38

0x64–65 Tap 1 Start

0x66–67 Tap 1 Delta

0x68–69 Tap 2 Start

0x6A–6B Tap 2 Delta

0x6C–6D Tap 3 Start

0x6E– 6F Tap 3 Delta

Access / Notes: 16-bit, read-write / PDV_CLSIM_TAP1START

Bit Name Description

15–0 [no name] The starting 8-bit pixel address within the 4096-pixel raster.
0x64 contains the least significant bits; 0x65 contains the most significant bits.

Access / Notes: 16-bit, read-write / PDV_CLSIM_TAP1DELTA

Bit Name Description

15–0 [no name] The delta added to the starting pixel address with each pixel clock cycle.
0x66 contains the least significant bits; 0x67 contains the most significant bits.

Access / Notes: 16-bit, read-write / PDV_CLSIM_TAP2START

Bit Name Description

15–0 [no name] The starting 8-bit pixel address within the 4096-pixel raster.
0x68 contains the least significant bits; 0x69 contains the most significant bits.

Access / Notes: 16-bit, read-write / PDV_CLSIM_TAP2DELTA

Bit Name Description

15–0 [no name] The delta added to the starting pixel address with each pixel clock cycle.
0x6A contains the least significant bits; 0x6B contains the most significant bits.

Access / Notes: 16-bit, read-write / PDV_CLSIM_TAP3START

Bit Name Description

15–0 [no name] The starting 8-bit pixel address within the 4096-pixel raster.
0x6C contains the least significant bits; 0x6D contains the most significant bits.

Access / Notes: 16-bit, read-write / PDV_CLSIM_TAP3DELTA

Bit Name Description

15–0 [no name] The delta added to the starting pixel address with each pixel clock cycle.
0x6E contains the least significant bits; 0x6F contains the most significant bits.

CLS Firmware

EDT, Inc. 2014 November 10 39

Appendix C: About the Camera Link Standard
Below is a brief overview of the signals in the Camera Link interface. For a complete description of these
signals, refer to your camera manual or the Camera Link specification (see Related Resources on page 7).

The pixel clock is a continuously-running clock between 20 and 85 MHz that determines the rate of data
transfer. Data transfer is managed via three timing signals from the camera:

Line-valid The line-valid signal is true during those pixel clock cycles for which valid
image data is to be transferred. Line-valid then goes false for the horizontal
blanking interval before starting over for the next raster line.

Frame-valid The frame-valid signal goes true at the start of the first raster line of the
image, and remains true until the end of the final raster line of the image.

Data-valid The data-valid signal was added to handle cameras having a pixel clock
slower than 20 MHz. Typically, data-valid toggles with each clock edge to
allow a 10 MHz camera to be used with a 20 MHz Camera Link interface.

In addition to the above signals, a base-mode camera has 24 image data signals to the frame grabber, four
generic camera control lines to the camera, and two optional UART signals (one in each direction) which
can be used to perform diagnostics or to set up the camera for various modes of operation.

One of the four camera control lines is often used to trigger the camera. If the exposure time is not set
through the UART, it can be determined by the length of this expose pulse instead. The other three camera
control lines are often left unused.

The Camera Link interface serializes the image data plus the line-valid, frame-valid, and data-valid signals
at seven times the pixel clock rate, so they can be transferred using a cable with fewer wires. Therefore, an
interface using an 85 MHz pixel clock can transfer data over the cable at 595 MHz.

Medium-mode cameras use a second 26-wire cable identical to the base-mode cable to provide up to 24
additional image data signals, for a total of 48 bits per pixel clock cycle from the camera. In medium- and
full-mode operation, the UART and camera control wires of the second cable are not used.

In medium mode, the CLS supports a maximum of 32 bits per pixel clock cycle.

In full mode (supported only by the PCIe version of the CLS), the UART and camera control wires in the
second cable can provide an additional 24 lines of image data beyond the 48 supported in medium mode,
for a total of 72 data bits – although the Camera Link specification describes cameras no larger than 64 bits.

CLS Firmware

EDT, Inc. 2014 November 10 40

Revision Log

Below is a history of modifications to this guide.

Date Rev By Pp Detail

20141110 0004 PH Title pg • Deleted unused document # (008-02781-[rev#]).

20141110 0004 PH,RH All • Conformed “framegrabber” and “fiberoptic” to “frame grabber” and “fiber-optic.”

20141110 0004 PH,RH 10 • Under Building or Rebuilding an Application: Added Note.

20140630 0003 PH,CH 8 • Fig. 2: Deleted “Triggering” labels on Berg pins; CLS doesn’t support triggering.

20130311 02d PH,CH,
RH

5,24 • For PCI DV CLS only – in Tables 1 and 4, clarified which types of base and me-
dium mode are supported by this legacy product.

20130311 02d PH,CH,
RH

12 • Under main head “Operational Details” and subhead “Image Data Source”:
deleted no-longer-relevant paragraph 6 (“Though targeting primarily...”).

20121203 02c PH,CH 37 • In Tap 0 Delta register, corrected hex address to 0x62-63.

20120803 02b PH,CH 24 • In Table 4 - Legacy (“DV”) boards: Arguments to pciload, under “PCIe8 DV CLS
as frame grabber,” added “2” to both filenames:

 – Changed “[...]camlk” to “[...]camlk2“.
 – Changed “[...]camlk_fm” to “[...]camlk2_fm“.

20120621 02a PH,CH 1 • In table, for PCIe8 DV CLS (legacy), corrected data rate to 300 MB/s.

20110515 02 PH,RH All • Repaginated to use continuous arabic numerals from title page to end.

20110515 02 PH,RH All • Added new PCIe8 “DVa” CLS and other new or updated information (e.g., in-
cluded files, directives, firmware, etc.).

• Implemented new terminology: Changed “digital video” to “vision” or “digital im-
aging.”

20110104 01 PH,RH All • Added new PCIe8 “DV” CLS.

20070000 00 LW All • Created new guide.

	User's Guide

	Contents

	EDT Camera Link Simulator (CLS) Family
	Overview
	Requirements
	Related Resources

	Installation
	Included Files
	Application Programming Interface (API)
	Building or Rebuilding an Application

	Getting Started
	Simple Image Data Verification
	Simple Serial Verification

	Operational Details
	Image Data Source
	Serial Data
	Triggering

	Units, Connectors, and Channels
	Initializing the Board
	Using clsiminit
	Options for clsiminit
	Simulator-specific Configuration File Directives

	Sending Simulated Data
	Image Data From Internal Counter
	Image Data From Host Via DMA – with simple_clsend
	Image Data From Host Via DMA – with send_tiffs

	Firmware
	Checking and Loading the Firmware
	Corrupted Firmware
	Camera Link (MDR26) Connectors
	Debug Connector
	Camera Link Registers
	Simulator Registers
	Timing Registers
	Interleaving Registers

	Revision Log

