
PCI 16D

PCI 16D
User’s Guide

Revision: A
February 2004

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 1

PCI 16D

Control Information
Control Item Details

Document Owner Mark Mason
Information Label EDT Public
Supersedes None
File Location frm:/pci16d/p16d.doc
Document Number 008-00969-00

Revision History
Revision Date Revision Description Originator
Draft 16-Feb-04 Convert from FrameMaker to Word; update pciload

section
S Vasil

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 2

PCI 16D

The information in this document is subject to change without notice and does not represent a
commitment on the part of Engineering Design Team, Inc. The software described in this document is
furnished under a license agreement or nondisclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement.
Engineering Design Team, Inc. (“EDT”), makes no warranties, express or implied, including without
limitation the implied warranties of merchantibility and fitness for a particular purpose, regarding the
software described in this document (“the software”). EDT does not warrant, guarantee, or make any
representations regarding the use or the results of the use of the software in terms of its correctness,
accuracy, reliability, currentness, or otherwise. The entire risk as to the results and performance of the
software is assumed by you. The exclusion of implied warranties is not permitted by some
jurisdictions. The above exclusion may not apply to you.
In no event will EDT, its directors, officers, employees, or agents be liable to you for any
consequential, incidental, or indirect damages (including damages for loss of business profits, business
interruption, loss of business information, and the like) arising out of the use or inability to use the
software even if EDT has been advised of the possibility of such damages. Because some jurisdictions
do not allow the exclusion or limitation of liability for consequential or incidental damages, the above
limitations may not apply to you. EDT’s liability to you for actual damages for any cause whatsoever,
and regardless of the form of the action (whether in contract, tort [including negligence], product
liability or otherwise), will be limited to $50.
No part of this manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, without the express written agreement of Engineering Design Team, Inc.
© Copyright Engineering Design Team, Inc. 1997–2004. All rights reserved.
Sun, SunOS, SBus, SPARC, and SPARCstation are trademarks of Sun Microsystems, Incorporated.
Windows NT/2000/XP is a registered trademark of Microsoft Corporation.
Intel and Pentium are registered trademarks of Intel Corporation.
UNIX is a registered trademark of X/Open Company, Ltd.
OPEN LOOK is a registered trademark of UNIX System Laboratories, Inc.
Red Hat is a trademark of Red Hat Software, Inc.
IRex is a trademark of Silicon Graphics, Inc.
AIX is a registered trademark of International Business Machines Corporation.
Xilinx is a registered trademark of Xilinx, Inc.
Kodak is a trademark of Eastman Kodak Company.
The software described in this manual is based in part on the work of the independent JPEG Group.
EDT and Engineering Design Team are trademarks of Engineering Design Team, Inc.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 3

PCI 16D

Contents
Overview ..5

After Installing ...6
Testing...6
Building the Sample Programs ..7
Uninstalling ..7
Upgrading the Firmware ..8

Real-time Input and Output ..9
Elements of EDT Interface Applications ..9
DMA Library Routines..11
EDT Message Handler Library...45

Message Definitions ..45
Files...46

Hardware..53
PCI Local Bus Interface ...53
FIFO ..53
Device Interface...53
Logic Levels...53

Signals ...55
Handshake Signals..57
Data Signals ..57
Synchronous Control Signals...57
Asynchronous Control Signals...58
Timing..58
Using the Signal for Data I/O ...59

Registers..60
Configuration Space ..60
PCI Local Bus Addresses ..61
Scatter-gather DMA ...62

Performing DMA..63
Flash ROM Access Registers ..68
Device Control Registers ...69

Specifications..74

References...75

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 4

PCI 16D

Overview
The PCI 16D is a single-slot, 16-bit parallel input/output interface for PCI Bus-based computer
systems. It is designed for continuous input or output between a user device and PCI Bus host memory.
The PCI 16D features 128 bytes of FIFO storage in each direction and can support continuous data
rates of up to 10 MB per second. The board also includes diagnostic capability.
The PCI 16D supports scatter-gather Direct Memory Access (DMA) in hardware, adapting to the
memory management model of the host architecture. It includes a software driver and software library,
enabling applications to access the PCI 16D and transfer data continuously or in bursts across the PCI
16D interface using standard library calls.
The PCI 16D provides 16 data inputs and 16 data outputs for direct memory access (DMA). The
interface also provides three status inputs, three control outputs and a device interrupt. If you use the
PCI 16D DMA input, the 16 data outputs are available for additional control signals. If you use the PCI
16D for DMA output, you can use the 16 data inputs for additional device status inputs.
The PCI 16D uses a simple clock/acknowledge protocol for the DMA data. Handshake polarity is
programmable.
This manual describes the operation of the PCI 16D with UNIX-based and Windows operating
systems.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 5

PCI 16D

After Installing
After installing the PCI 16D, test the board and build the sample programs, if you wish. Instructions for
uninstalling the software and upgrading the firmware are also provided if necessary.

Testing
The PCI 16D is tested at the factory with a device that reads and writes the interface based on the state
of the DIR (direction) line.
You can perform diagnostics on the PCI 16D by installing an optional loopback connector and
executing the looptest.c diagnostic program included with the standard PCI 16D software. The
diagnostic program requires that the PCI 16D driver be installed.
To test the PCI 16D, loop output data from the host back panel or the end of the device cable back to
the input. The optional EDT PCI 16D Loopback Kit, part number 012-00067, provides test connectors
for both loopback configurations. The loopback kit contains complete instructions for the PCI 16D
loopback diagnostics.
The diagnostic program looptest.c, used in conjunction with the loopback test connectors,
performs the tests described in the table below. To install the program, at the command prompt, enter:

make looptest

Use looptest with the following command-line arguments:
looptest [-u n] [-e]

-u n The device number of the board to test: use 0 for the first PCI 16D board, 1 for
the second, etc. The default device is 0.

-e Prints first miscompared word only.

Test Name Test Operation Performed

Programmed I/O
Loopback Data Test

Write and read walking ones and zeroes (with each bit uniquely high
and low), then read each word and compare the expected values
with the actual values.

Block Loopback Write and read walking ones and zeroes (with each bit uniquely high
and low) using DMA, then read each word and compare the expected
and actual values.

Function/Status Bits Output all function bits, and compare the reported function bits in the
Status Register with the looped-back status bits.

DINT signal Program the driver to get a SIGIO signal on DINT, then pulse DIR
(which loops back to ATTN), and check for occurrence of the SIGIO
signal.

Error on DINT Program the driver to give an EINTR error if DINT comes in between
I/O requests; pulse DIR; then perform a read and check for an error
return.

5-second read timeout Program the driver to give a 5-second read timeout, then check for
the duration and an ETIMEDOUT error return.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 6

PCI 16D

5-second write timeout Program the driver to give a 5-second write timeout, then check for
the duration and an ETIMEDOUT error return.

See the “Signals” section on page 55 and the “Registers” section on page 60 for more information.

Building the Sample Programs
UNIX-based Systems
To build any of the example programs on UNIX-based systems, cd to /opt/EDTp16d and enter the
command:

make program name

where file is the name of the example program you wish to install.
To build and install all the example programs, enter the command:

make

Outcome: All example programs display a message that explains their usage when you enter their
names without parameters.

Windows Systems
To build any of the example programs on Windows systems:
1. Run pci11 Utilities.
2. Enter the command:

nmake program.exe

where file is the name of the example program you wish to build.
To build and install all the example programs, simply enter the command:

nmake

Outcome: All example programs display a message that explains their usage when you enter their
names without parameters.
Note: You can also build the sample programs by setting up a project in Windows Visual C++. Contact
EDT for instructions.

Uninstalling
Solaris Systems
To remove the PCI 11W driver on Solaris systems:
1. Become root or superuser.
2. Enter:

pkgrm EDTp16d

For further details, consult your operating system documentation, or call Engineering Design Team.

Linux Systems
To remove the PCI 11W driver on Linux systems, enter:

cd /opt/EDTp16d

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 7

PCI 16D

make unload

cd /

rm –rf /opt/EDTp16d

Windows Systems
To remove the PCI 11W toolkit on Windows systems, use the Windows Add/Remove utility. For
further details, consult your Windows documentation.
You can always get the most recent update of the software from our web site, www.edt.com. See the
document titled Contact Us.

Upgrading the Firmware
Field upgrades to the PCI firmware may occasionally be necessary when upgrading to a new device
driver.
The Xilinx file is downloaded to the board’s PCI interface Xilinx PROM using the pciload program:
1. Navigate to the directory in which you installed the driver (for UNIX-based systems, usually

/opt/EDTp16d; for Windows, usually C:\EDT\p16d).
2. At the prompt, enter:

pciload verify

This will compare the current PCI Xilinx file in the package with what is currently on the board’s
PROM.
Note: If more than one board is installed on a system, use the following, where N is the board unit
number:

pciload –u N verify

Outcome: Dates and revision numbers of the PROM and File ID will be displayed. If these
numbers match, there is no need for a field upgrade. If they differ, upgrade the flash PROM as
follows:
a. At the prompt, enter:

pciload update

b. Shut down the operating system and turn the host computer off and then back on again. The
board reloads firmware from flash ROM only during power-up. Therefore, after running
pciload, the new bit file is not in the Xilinx until the system has been power-cycled; simply
rebooting is not adequate.

To just see what boards are in the system, run pciload without any arguments:
pciload

To see other pciload options, run:
pciload help

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 8

PCI 16D

Real-time Input and Output
The PCI 16D device driver can perform two kinds of DMA transfers: continuous and noncontinuous.
To perform continuous transfers, use ring buffers. The ring buffers are a set of buffers that applications
can access continuously, reading and writing as required. When the last buffer in the set has been
accessed, the application then cycles back to the first buffer. See
edt_configure_ring_buffers for a complete description of the ring buffer parameters that can
be configured. See the sample programs simple_getdata.c and simple_putdata.c
distributed with the driver for examples of using the ring buffers.
For noncontinuous transfers, the driver uses DMA system calls read and write. Each read and
write system call performs a single, noncontinuous DMA transfer.
Note: For portability, use the library calls edt_reg_read, edt_reg_write, edt_reg_or, or
edt_reg_and to read or write the hardware registers rather than ioctls.

Elements of EDT Interface Applications
Applications for performing continuous transfers typically include the following elements:

#include "edtinc.h"

main()
{

EdtDev *edt_p = edt_open("pcd", 0) ;
char *buf_ptr; int outfd = open("outfile", 1) ;

/* Configure a ring buffer with four 1MB buffers */
edt_configure_ring_buffers(edt_p, 1024*1024, 4, EDT_READ, NULL) ;

/* start 4 buffers*/
edt_start_buffers(edt_p, 4) ;

/* This loop will capture data indefinitely, but the write()
 * (or whatever processing on the data) must be able to keep up.
*/
while ((buf_ptr = edt_wait_for_buffers(edt_p, 1)) != NULL)

write(outfd, buf_ptr, 1024*1024) ;
edt_start_buffers(edt_p, 1) ;

edt_close(edt_p) ;

}

Applications for performing noncontinuous transfers typically include the following elements. This
example opens a specific DMA channel with edt_open_channel, assuming that a multi-channel
Xilinx firmware file has been loaded:

#include "edtinc.h"

main()

{

EdtDev *edt_p = edt_open_channel("pcd", 1, 2) ;
char buf[1024] ;
int numbytes, outfd = open("outfile", 1) ;

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 9

PCI 16D

/*
 * Because read()s are noncontinuous, unless is there hardware
 * handshaking there will be gaps in the data between each read().
 */
while ((numbytes = edt_read(edt_p, buf, 1024)) > 0)

write(outfd, buf, numbytes) ;
edt_close(edt_p) ;

}

You can use ring buffer mode for real-time data capture using a small number (typically 1 MB) of
buffers configured in a round-robin data FIFO. During capture, the application must be able to transfer
or process the data before data acquisition wraps around and overwrites the buffer currently being
processed.
The example below shows real-time data capture using ring buffers, although it includes no error
checking. In this example, process_data(bufptr) must execute in the same amount of time it
takes DMA to fill a single buffer or faster.
#include "edtinc.h"

main()
{

EdtDev *edt_p = edt_open("pcd", 0) ;

/* Configure four 1 MB buffers:
 * one for DMA
 * one for the second DMA register on most EDT boards
 * one for "process_data(bufptr)" to work on
 * one to keep DMA away from "process_data()"
 */
edt_configure_ring_buffers(edt_p, 1*1024*1024, 4, EDT_READ, NULL) ;

 edt_start_buffers(edt_p, 4) ; /* start 4 buffers */

for (;;)
{

char *bufptr ;

/* Wait for each buffer to complete, then process it.
 * The driver continues DMA concurrently with processing.
 */
bufptr = edt_wait_for_buffers(edt_p, 1) ;
process_data(bufptr) ;

edt_start_buffers(edt_p, 1) ;

}

}

Check compiler options in the EDT-provided make files.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 10

PCI 16D

DMA Library Routines
The DMA library provides a set of consistent routines across many of the EDT products, with simple
yet powerful ring-buffered DMA capabilities. The following table lists the general DMA library
routines, described in an order corresponding roughly to their general usefulness.

Routine Description

Startup/Shutdown

edt_open Opens the EDT Product for application access.
edt_open_channel Opens a specific channel on the EDT Product for application

access.
edt_close Terminates access to the EDT Product and releases resources.
edt_parse_unit Parses an EDT device name string.

Input/Output

edt_read Single, application-level buffer read from the EDT Product.
edt_write Single, application-level buffer write to the EDT Product.
edt_start_buffers Begins DMA transfer from or to specified number of buffers.
edt_stop_buffers Stops DMA transfer after the current buffer(s) complete(s).
edt_check_for_buffers Checks whether the specified number of buffers have completed

without blocking.
edt_done_count Returns absolute (cumulative) number of completed buffers.
edt_get_todo Gets the number of buffers that the driver has been told to acquire.
edt_wait_for_buffers Blocks until the specified number of buffers have completed.
edt_wait_for_next_buffer Waits for the next buffer that completes DMA.
edt_wait_buffers_timed Blocks until the specified number of buffers have completed;

returns a pointer to the time that the last buffer finished.
edt_next_writebuf Returns a pointer to the next buffer scheduled for output DMA.
edt_set_buffer Sets which buffer should be started next.
edt_set_buffer_size Used to change the size or direction of one of the ring buffers.
edt_last_buffer Waits for the last buffer that has been transferred.
edt_last_buffer_timed Like edt_last_buffer but also returns the time at which the dma was

complete on this buffer.
edt_configure_ring_buffers Configures the ring buffers.
edt_buffer_addresses Returns an array of addresses referencing the ring buffers.
edt_disable_ring_buffers Stops DMA transfer, disables ring buffers and releases resources.
edt_ring_buffer_overrun Detects ring buffer overrun which may have corrupted data.
edt_reset_ring_buffers Stops DMA in progress and resets the ring buffers.
edt_configure_block_buffers Configures ring buffers using a contiguous block of memory.
edt_startdma_action Specifies when to perform the action at the start of a dma transfer

as set by edt_startdma_reg().
edt_enddma_action Specifies when to perform the action at the end of a dma transfer

as set by edt_ednddma_reg().

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 11

PCI 16D

Routine Description
edt_startdma_reg Specifies the register and value to use at the start of dma, as set by

edt_startdma_action().
edt_abort_dma Cancels the current DMA, resets pointers to the current buffer.
edt_ablort_current_dma Cancels the current DMA, moves pointers to the next buffer.
edt_get_bytecount Returns the number of bytes transferred.
edt_timeouts Returns the cumulative number of timeouts since the device was

opened.
edt_get_timeout_count Returns the number of bytes transferred as of the last timeout.
edt_set_timeout_action Sets the driver behavior on a timeout.
edt_get_timeout_goodbits Returns the number of bits from the remote device since the last

timeout.
edt_do_timeout Causes the driver to perform the same actions as it would on a

timeout (causing partially filled fifos to be flushed and dma to be
aborted).

edt_get_rtimeout Gets the DMA read timeout period.
edt_set_rtimeout Sets how long to wait for a DMA read to complete, before returning.
edt_get_wtimeout Gets the DMA write timeout period.
edt_set_wtimeout Sets how long to wait for a DMA write to complete, before

returning.
edt_get_timestamp Gets the seconds and microseconds timestamp of dma completion

on the buffer specified by bufnum.
edt_get_reftime Gets the seconds and mircroseconds timestamp in the same

format as the buffer_timed function.
edt_ref_tmstamp Used for debugging. Able to see a history with setdebug -g with

an application defined event in the same timeline as driver events.
edt_get_burst_enable Returns a value indicating whether PCI Bus burst transfers are

enabled during DMA.
edt_set_burst_enable Turns on or off PCI Bus burst transfers during DMA.
edt_get_firstflush Returns the value set by edt_set_firstflush(). This is an obsolete

function.
edt_set_firstflush Tells whether and when to flush FIFOs before DMA.
edt_flush_fifo Flushes the EDT Product FIFOs.
edt_get_goodbits Returns the number of bits from the remote device.

Control

edt_set_event_func Defines a function to call when an event occurs.
edt_remove_event_func Removes a previously set event function.
edt_reg_read Reads the contents of the specified EDT Product register.
edt_reg_write Writes a value to the specified EDT Product register.
edt_reg_and ANDs the value provided with the value of the specified EDT

Product register.
edt_reg_or ORs the value provided with the value of the specified EDT Product

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 12

PCI 16D

Routine Description
register.

edt_get_foicount Returns the number of RCI modules connected to the EDT FOI
(fiber optic interface) board.

edt_set_foiunit Sets which RCI unit to address with subsequent serial and register
read/write functions.

edt_intfc_write A convenience routine, partly for backward compatability, to access
the XILINX interface registers.

edt_intfc_write_short A convenience routine, partly for backward compatability, to access
the XILINX interface registers.

edt_intfc_write_32 A convenience routine, partly for backward compatability, to access
the XILINX interface registers.

Utility

edt_msleep Sleep for the specified number of microseconds.
edt_alloc Allocate page-aligned memory in a system-independent way.
edt_free Free the memory allocated with edt_alloc.
edt_perror Prints a system error message in case of error.
edt_errno Returns an operating system-dependent error number.
edt_access Determines file access independent of operating system.
edt_get_bitpath Obtains pathname to the currently loaded interface bitfile from the

driver.

edt_open

Description
Opens the specified EDT Product and sets up the device handle.
Syntax
#include "edtinc.h"

EdtDev *edt_open(char *devname, int unit) ;

Arguments
devname a string with the name of the EDT Product board. For example, “edt”.
unit specifies the device unit number

Return
A handle of type (EdtDev *), or NULL if error. (The structure(EdtDev *) is defined in libedt.h.) If an
error occurs, check the errno global variable for the error number. The device name for the EDT
Product is “edt”. Once opened, the device handle may be used to perform I/O using edt_read(),
edt_write(), edt_configure_ring_buffers(), and other input-output library calls.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 13

PCI 16D

edt_open_channel
Description
Opens a specific DMA channel on the specified EDT Product, when multiple channels are supported
by the Xilinx firmware, and sets up the device handle. Use edt_close() to close the channel.
Syntax
#include "edtinc.h"

EdtDev *edt_open_channel(char *devname, int unit, int channel) ;

Arguments
devname a string with the name of the EDT Product board. For example, “edt”.
unit specifies the device unit number
channel specifies the DMA channel number counting from zero

Return
A handle of type (EdtDev *), or NULL if error. (The structure(EdtDev *) is defined in libedt.h.) If an
error occurs, check the errno global variable for the error number. The device name for the EDT
Product is “edt”. Once opened, the device handle may be used to perform I/O using edt_read(),
edt_write(), edt_configure_ring_buffers(), and other input-output library calls.

edt_close
Description
Shuts down all pending I/O operations, closes the device or channel and frees all driver resources
associated with the device handle.
Syntax
#include "edtinc.h"

int edt_close(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_parse_unit
Description
Parses an EDT device name string. Fills in the name of the device, with the default_device if
specified, or a default determined by the package, and returns a unit number. Designed to facilitate a
flexible device/unit command line argument scheme for application programs. Most EDT
example/utility programs use this subroutine to allow users to specify either a unit number alone or a
device/unit number concatenation.
For example, if you are using a PCI CD, then either xtest -u 0 or xtest -u pcd0 could both
be used, since xtest sends the argument to edt_parse_unit, and the subroutine parses the string
to returns the device and unit number separately.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 14

PCI 16D

Syntax
int edt_parse_unit(char *str, char *dev, char *default_dev)

Arguments
str device name string. Should be either a unit number (“0” - “8”) or device/unit

concantenation (“pcd0,” “pcd1,” etc.)
dev device string, filled in by the routine. For example, “pcd.”
default_dev device name to use if none is given in the str argument. If NULL, will be filled in

by the default device for the package in use. For example, if the code base is from a
PCI CD package, the default_dev will be set to “pcd.”

Return
Unit number or -1 on error. The first device is unit 0.
See Also
example/utility programs xtest.c, initcam.c, take.c

edt_read
Description
Performs a read on the EDT Product. For those on UNIX systems, the UNIX 2 GB file offset bug is
avoided during large amounts of input or output, that is, reading past 231 bytes does not fail. This call
is not multibuffering, and no transfer is active when it completes.
Syntax
#include "edtinc.h"

int edt_read(EdtDev *edt_p, void *buf, int size);

Arguments
edt_p device handle returned from edt_open or edt_open_channel
buf address of buffer to read into
size size of read in bytes

Return
The return value from read, normally the number of bytes read; –1 is returned in case of error. Call
edt_perror() to get the system error message.

Note If using timeouts, call edt_timeouts after edt_read returns to see if the number of timeouts
has incremented. If it has incremented, call edt_get_timeout_count to get the number of
bytes transferred into the buffer. DMA does not automatically continue on to the next buffer,
so you need to call edt_start_buffers to move on to the next buffer in the ring.

edt_write
Description
Perform a write on the EDT Product. For those on UNIX systems, the UNIX 2 GB file offset bug is
avoided during large amounts of input or output; that is, writing past 231 does not fail. This call is not
multibuffering, and no transfer is active when it completes.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 15

PCI 16D

Syntax
#include "edtinc.h"

int edt_write(EdtDev *edt_p, void *buf, int size);

Arguments
edt_p device handle returned from edt_open or edt_open_channel
buf address of buffer to write from
size size of write in bytes

Return
The return value from write; –1 is returned in case of error. Call edt_perror() to get the system error
message.

Note If using timeouts, call edt_timeouts after edt_write returns to see if the number of timeouts
has incremented. If it has incremented, call edt_get_timeout_count to get the number of
bytes transferred into the buffer. DMA does not automatically continue on to the next buffer,
so you need to call edt_start_buffers to move on to the next buffer in the ring.

edt_start_buffers
Description
Starts DMA to the specified number of buffers. If you supply a number greater than the number of
buffers set up, DMA continues looping through the buffers until the total count has been satisfied.
Syntax
#include "edtinc.h"

int edt_start_buffers(EdtDev *edt_p, int bufnum);

Arguments
edt_p device handle returned from edt_open or edt_open_channel
bufnum Number of buffers to release to the driver for transfer. An argument of 0

puts the driver in free running mode, and transfers run continuously until
edt_stop_buffers() is called.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_stop_buffers
Description
Stops DMA transfer after the current buffer has completed. Ring buffer mode remains active, and
transfers will be continued by calling edt_start_buffers().
Syntax
#include "edtinc.h"

int edt_stop_buffers(EdtDev *edt_p);

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 16

PCI 16D

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_check_for_buffers
Description
Checks whether the specified number of buffers have completed without blocking.
Syntax
#include "edtinc.h"

void *edt_check_for_buffers(EdtDev *edt_p, int count);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.
count number of buffers. Must be 1 or greater. Four is recommended.

Return
Returns the address of the ring buffer corresponding to count if it has completed DMA, or NULL if
count buffers are not yet complete.
Note If the ring buffer is in free-running mode and the application cannot process data as fast as it

is acquired, DMA will wrap around and overwrite the referenced buffer. The application must
ensure that the data in the buffer is processed or copied out in time to prevent overrun.

edt_done_count
Description
Returns the cumulative count of completed buffer transfers in ring buffer mode.
Syntax
#include "edtinc.h"

int edt_done_count(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Return
The number of completed buffer transfers. Completed buffers are numbered consecutively starting with
0 when edt_configure_ring_buffers() is invoked. The index of the ring buffer most recently completed
by the driver equals the number returned modulo the number of ring buffers. –1 is returned if ring
buffer mode is not configured. If an error occurs, call edt_perror() to get the system error message.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 17

PCI 16D

edt_get_todo
Description
Gets the number of buffers that the driver has been told to acquire. This allows an application to know
the state of the ring buffers within an interrupt, timeout, or when cleaning up on close. It also allows the
application to know how close it is getting behind the acquisition. It is not normally needed.
Syntax
uint_t edt_get_todo(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Example
int curdone;

int curtodo;

curdone=edt_done_count(pdv_p);

curtodo=edt_get_todo(pdv_p);

/* curtodo--curdone how close the dma is to catching with our
processing */

Return
Number of buffers started via edt_start_buffers.
See Also
edt_done_count(), edt_start_buffers(), edt_wait_for_buffers()

edt_wait_for_buffers

Description
Blocks until the specified number of buffers have completed.
Syntax
#include "edtinc.h"

void *edt_wait_buffers(EdtDev *edt_p, int count);

Arguments
edt_p device handle returned from edt_open or edt_open_channel
count How many buffers to block for. Completed buffers are numbered relatively;

start each call with 1.

Return
Address of last completed buffer on success; NULL on error. If an error occurs, call edt_perror() to get
the system error message.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 18

PCI 16D

Note If using timeouts, call edt_timeouts after edt_wait_for_buffers returns to see if the number of
timeouts has incremented. If it has incremented, call edt_get_timeout_count to get the
number of bytes transferred into the buffer. DMA does not automatically continue on to the
next buffer, so you need to call edt_start_buffers to move on to the next buffer in the ring.

Note If the ring buffer is in free-running mode and the application cannot process data as fast as it
is acquired, DMA will wrap around and overwrite the referenced buffer. The application must
ensure that the data in the buffer is processed or copied out in time to prevent overrun.

edt_wait_for_next_buffer
Description
Waits for the next buffer that finishes DMA. Depending on how often this routine is called, buffers that
have already completed DMA might be skipped.
Syntax
#include "edtinc.h"

void *edt_wait_for_next_buffer(EdtDev *edt_p) ;

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Return
Returns a pointer to the buffer, or NULL on failure. If an error occurs, call edt_perror() to get the
system error message.

edt_wait_buffers_timed
Description
Blocks until the specified number of buffers have completed with a pointer to the time the last buffer
finished.
Syntax
#include "edtinc.h"

void *edt_wait_buffers_timed (EdtDev *edt_p, int count, uint *timep);

Arguments
edt_p device handle returned from edt_open or edt_open_channel
count buffer number for which to block. Completed buffers are numbered

cumulatively starting with 0 when the EDT Product is opened.
timep pointer to an array of two unsigned integers. The first integer is seconds, the

next integer is microseconds representing the system time at which the
buffer completed.

Return
Address of last completed buffer on success; NULL on error. If an error occurs, call edt_perror() to get
the system error message.
Note If the ring buffer is in free-running mode and the application cannot process data as fast as it

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 19

PCI 16D

is acquired, DMA will wrap around and overwrite the referenced buffer . The application
must ensure that the data in the buffer is processed or copied out in time to prevent overrun.

edt_next_writebuf
Description
Returns a pointer to the next buffer scheduled for output DMA, in order to fill the buffer with data.
Syntax
#include "edtinc.h"

void *edt_next_writebuf(EdtDev *edt_p) ;

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Return
Returns a pointer to the buffer, or NULL on failure. If an error occurs, call edt_perror() to get the
system error message.

edt_set_buffer
Description
Sets which buffer should be started next. Usually done to recover after a timeout, interrupt, or error.
Arguments

edt_p device handle returned from edt_open or edt_open_channel.

Syntax
#include "edtinc.h"

void *edt_next_writebuf(EdtDev *edt_p) ;

Example
u_int curdone;

edt_stop_buffers(edt_p);

curdone=edt_done_count(edt_p);

edt_set_buffer(edt_p, 0);

Return
0 on success, -1 on failure.
See Also
edt_stop_buffers(), edt_done_count(), edt_get_todo()

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 20

PCI 16D

edt_set_buffer_size
Description
Used to change the size or direction of one of the ring buffers. Almost never used. Mixing directions
requires detailed knowledge of the interface since pending preloaded DMA transfers need to be
coordinated with the interface fifo direction. For example, a dma write will complete when the data is
in the output fifo, but the dma read should not be started until the data is out to the external device.
Most applications requiring fast mixed reads/writes have worked out more cleanly using seperate,
simultaneous, read and write dma transfers using different dma channels.
Arguments

edt_p device handle returned from edt_open or edt_open_channel
which_buf index of ring buffer to change
size size to change it to
write_flag direction

Syntax
int edt_set_buffer_size(EdtDev *edt_p, unsigned int which_buf,
unsigned int size, unsigned int write_flag)

Example
u_int bufnum=3;

u_int bsize=1024;

u_int dirflag=EDT_WRITE;

int ret;

ret=edt_set_buffer_size(edt_p, bufnum, bsize, dirflag);

Return
0 on success, -1 on failure.
See Also
edt_open_channel(), redpcd8.c, rd16.c, rdssdio.c, wrssdio.c

edt_last_buffer
Description
Waits for the last buffer that has been transferred. This is useful if the application cannot keep up with
buffer transfer. If this routine is called for a second time before another buffer has been transferred, it
will block waiting for the next transfer to complete.
Arguments

edt_p device struct returned from edt_open
nSkipped pointer to an integer which will be filled in with number of buffers skipped,

if any.

Syntax
unsigned char *edt_last_buffer(EdtDev *edt_p, int *nSkipped)

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 21

PCI 16D

Example
int skipped_bufs;

u_char *buf;

buf=edt_last_buffer(edt_p, &skipped_bufs);

Return
Address of the image.
See Also
edt_wait_for_buffers, edt_last_buffer_timed

edt_last_buffer_timed
Description
Like edt_last_buffer but also returns the time at which the dma was complete on this buffer. “timep”
should point to an array of unsigned integers which will be filled in with the seconds and microseconds
of the time the buffer was finished being transferred.
Arguments

edt_p device struct returned from edt_open
timep pointer to an unsigned integer array

Syntax
unsigned char *edt_last_buffer_timed(EdtDev *edt_p, u_int *timep)

Example
u_int timestamp [2];

u_char *buf;

buf=edt_last_buffer_timed(edt_p, timestamp);

Return
Address of the image.
See Also
edt_wait_for_buffers(), edt_last_buffer(), edt_wait_buffers_timed

edt_configure_ring_buffers
Description
Configures the EDT device ring buffers. Any previous configuration is replaced, and previously
allocated buffers are released. Buffers can be allocated and maintained within the EDT device library
or within the user application itself.
Syntax
#include "edtinc.h"

int edt_configure_ring_buffers(EdtDev *edt_p, int bufsize, int nbufs,
 int data_output, void *bufarray[]);

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 22

PCI 16D

Arguments
edt_p device handle returned from edt_open or edt_open_channel
bufsize size of each buffer. For optimal efficiency, allocate a value approximating

throughput divided by 20: that is, if transfer occurs at 20 MB per second,
allocate 1 MB per buffer. Buffers significantly larger or smaller can overuse
memory or lock the system up in processing interrupts at this speed.

nbufs number of buffers. Must be 1 or greater. Four is recommended for most
applications.

data_direction Indicates whether this connection is to be used for input or output. Only one
direction is possible per device or subdevice at any given time:
EDT_READ = 0
EDT_WRITE = 1

bufarray If NULL, the library will allocate a set of page-aligned ring buffers. If not
NULL, this argument is an array of pointers to application-allocated buffers;
these buffers must match the size and number of buffers specified in this call
and will be used as the ring buffers.

Return
0 on success; –1 on error. If all buffers cannot be allocated, none are allocated and an error is returned.
Call edt_perror() to get the system error message.

edt_buffer_addresses
Description
Returns an array containing the addresses of the ring buffers.
Syntax
#include "edtinc.h"

void **edt_buffer_addresses(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Return
An array of pointers to the ring buffers allocated by the driver or the library. The array is indexed from
zero to n-1 where n is the number of ring buffers set in edt_configure_ring_buffers().

edt_disable_ring_buffers
Description
Disables the EDT device ring buffers. Pending DMA is cancelled and all buffers are released.
Syntax
#include "edtinc.h"

int edt_disable_ring_buffers(EdtDev *edt_p);

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 23

PCI 16D

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_ring_buffer_overrun
Description
Returns true (1) when DMA has wrapped around the ring buffer and overwritten the buffer which the
application is about to access. Returns false (0) otherwise.
Syntax
#include "edtinc.h"

int edt_ring_buffer_overrun(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Return
1 (true) when overrun has occurred, corrupting the current buffer, 0 (false) otherwise.
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_reset_ring_buffers
Description
Stops any DMA currently in progress, then resets the ring buffer to start the next DMA at bufnum.
Syntax
#include "edtinc.h"

int edt_reset_ring_buffers(EdtDev *edt_p, int bufnum) ;

Arguments
edt_p device handle returned from edt_open or edt_open_channel.
bufnum The index of the ring buffer at which to start the next DMA. A number larger

than the number of buffers set up sets the current done count to the number
suppliedmodulo the number of buffers.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_configure_block_buffers
Description
Similar to edt_configure_ring_buffers, except that it allocates the ring buffers as a single large block,
setting the ring buffer addresses from within that block. This allows reading or writing buffers from/to
a file in single chunks larger than the buffer size, which is sometimes considerable more efficient.
Buffer sizes are rounded up by PAGE_SIZE so that DMA occurs on a page boundary.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 24

PCI 16D

Syntax
int edt_configure_block_buffers(EdtDev 8edt_p, int bufsize, int
numbufs, int write_flag, int header_size, int header_before)

Arguments
edt_p device struct returned from edt_open
bufsize size of the individual buffers
numbufs number of buffers to create
write_flag 1, if these buffers are set up to go out; 0 otherwise
header_size if non-zero, additional memory (header_size bytes) will be allocated for each

buffer for Header data. The loocation of this header space is determined by
the argument header_before.

header_before if non-zero, the header space defined by header_size is placed before the
DMA buffer; otherwise, it comes after the DMA buffer. The value returned
by edt_wait_for_buffers is always the DMA buffer.

Return
0 on success, -1 on failure.
See Also
edt_configure_ring_buffers

edt_startdma_action
Description
Specifies when to perform the action at the start of a dma transfer as specified by edt_startdma_reg(). A
common use of this is to write to a register which signals an external device that dma has started, to
trigger the device to start sending. The default is no dma action. The PDV library uses this function to
send a trigger to a camera a the start of dma. This function allows the register write to occur in a critical
section with the start of dma and at the same time.
Syntax
void edt_startdma_action(EdtDev *edt_p, uint_t val);

Arguments
edt_p device struct returned from edt_open
val One of EDT_ACT_NEVER, EDT_ACT_ONCE, or EDT_ACT_ALWAYS

Example
edt_startdma_action(edt_p, EDT_ACT_ALWAYS);

edt_startdma_reg(edt_p, PDV_CMD, PDV_ENABLE_GRAB);

Return
void
See Also
edt_startdma_reg(), edt_reg_write(), edt_reg_read()

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 25

PCI 16D

edt_enddma_action
Description
Specifies when to perform the action at the end of a dma transfer as specified by edt_enddma_reg(). A
common use of this is to write to a register which signals an external device that dma is complete, or to
change the state of a signal which will be changed at the start of dma, so the external device can look
for an edge. The default is no end of dma action. Most applications can set the output signal, if needed,
from the application with edt_reg_write(). This routine is only needed if the action must happen within
microseconds of the end of dma.
Syntax
void edt_enddma_action(EdtDev *edt_p, uint_t val);

Arguments
edt_p device struct returned from edt_open
val One of EDT_ACT_NEVER, EDT_ACT_ONCE, or EDT_ACT_ALWAYS

Example
u_int fnct_value=0x1;

edt_enddma_action(edt_p, EDT_ACT_ALWAYS);

edt_enddma_reg(edt_p, PCD_FUNCT, fnct_value);

Return
void
See Also
edt_startdma_action(), edt_startdma_reg(), edt_reg_write(), edt_reg_read()

edt_startdma_reg
Description
Sets the register and value to use at the start of dma, as set by edt_startdma_action().
Syntax
void edt_startdma_reg(EdtDev *edt_p, uint_t desc, uint_t val);

Arguments
edt_p device struct returned from edt_open
desc register description of which register to use as in edtreg.h
val value to write

Example
edt_startdma_action(edt_p, EDT_ACT_ALWAYS);

edt_startdma_reg(edt_p, PDV_CMD, PDV_ENABLE_GRAB);

Return
void

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 26

PCI 16D

See Also
edt_startdma_action()

edt_abort_dma
Description
Stops any transfers currently in progress, resets the ring buffer pointers to restart on the current buffer.
Syntax
#include "edtinc.h"

int edt_abort_dma(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_abort_current_dma
Description
Stops the current transfers, resets the ring buffer pointers to the next buffer.
Syntax
#include "edtinc.h"

int edt_abort_current_dma(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Return
0 on success, -1 on failure

edt_get_bytecount
Description
Returns the number of bytes transferred since the last call of edt_open, accurate to the burst size, if
burst is enabled.
Syntax
#include "edtinc.h"

int edt_get_bytecount(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
The number of bytes transferred, as described above.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 27

PCI 16D

edt_timeouts
Description
Returns the number of read and write timeouts that have occurred since the last call of edt_open.
Syntax
#include "edtinc.h"

int edt_timeouts(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
The number of read and write timeouts that have occurred since the last call of edt_open.

edt_get_timeout_count
Description
Returns the number of bytes transferred at last timeout.
Syntax
#include "edtinc.h"

int edt_get_timeout_count(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
The number of bytes transferred at last timeout.

edt_set_timeout_action
Description
Sets the driver behavior on a timeout.
Syntax
#include "edtinc.h"

void edt_set_timeout_action(EdtDev *edt_p, int action);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

integer configures the any action taken on a timeout. Definitions:

EDT_TIMEOUT_NULL no extra action taken

action

EDT_TIMEOUT_BIT_STROBE flush any valid bits left in input circuits of
SSDIO.

Return
No return value.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 28

PCI 16D

edt_get_timeout_goodbits
Description
Returns the number of good bits in the last long word of a read buffer after the last timeout. This
routine is called after a timeout, if the timeout action is set to EDT_TIMEOUT_BIT_STROBE. (See
edt_set_timeout_action on page 28.)
Syntax
#include "edtinc.h"

int edt_get_timeout_goodbits(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
Number 0–31 represents the number of good bits in the last 32-bit word of the read buffer associated
with the last timeout.

edt_do_timeout
Description
Causes the driver to perform the same actions as it would on a timeout (causing partially filled fifos to
be flushed and dma to be aborted). Used when the application has knowledge that no more data will be
sent/accepted. Used when a common timeout cannot be known, such as when acquiring data from a
telescope ccd array where the amount of data sent depends on unknown future celestial events. Also
used by the library when the operating system can not otherwise wait for an interrupt and timeout at the
same time.
Syntax
int edt_do_timeout(EdtDev *edt_p)

Arguments
edt_p device struct returned from edt_open

Example
edt_do_timeout(edt_p);

Return
0 on success, -1 on failure
See Also
ring buffer discussion

edt_get_rtimeout
Description
Gets the current read timeout value: the number of milliseconds to wait for DMA reads to complete
before returning.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 29

PCI 16D

Syntax
#include "edtinc.h"

int edt_get_rtimeout(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
The number of milliseconds in the current read timeout period.

edt_set_rtimeout
Description
Sets the number of milliseconds for data read calls, such as edt_read(), to wait for DMA to complete
before returning. A value of 0 causes the I/O operation to wait forever—that is, to block on a read.
Edt_set_rtimeout affects edt_wait_for_buffers (see page XX) and edt_read (see page XX).
Syntax
#include "edtinc.h"

int edt_set_rtimeout(EdtDev *edt_p, int value);

Arguments
edt_p device handle returned from edt_open or edt_open_channel
value The number of milliseconds in the timeout period.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_get_wtimeout
Description
Gets the current write timeout value: the number of milliseconds to wait for DMA writes to complete
before returning.
Syntax
#include "edtinc.h"

int edt_get_wtimeout(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
The number of milliseconds in the current write timeout period.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 30

PCI 16D

edt_set_wtimeout
Description
Sets the number of milliseconds for data write calls, such as edt_write(), to wait for DMA to complete
before returning. A value of 0 causes the I/O operation to wait forever—that is, to block on a write.
Edt_set_wtimeout affects edt_wait_for_buffers (see page XX) and edt_write (see page XX).
Syntax
#include "edtinc.h"

int edt_set_wtimeout(EdtDev *edt_p, int value);

Arguments
edt_p device handle returned from edt_open or edt_open_channel
value The number of milliseconds in the timeout period.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_get_timestamp
Description
Gets the seconds and microseconds timestamp of when dma was completed on the buffer specified by
bufnum. “bufnum” is moded by the number of buffers in the ring buffer, so it can either be an index, or
the number of buffers completed.
Syntax
int edt_get_timestamp(EdtDev *edt_p, u_int *timep, u_int bufnum)

Arguments
edt_p device struct returned from edt_open
timep pointer to an unsigned integer array
bufnum buffer index, or number of buffers completed

Example
int timestamp[2];

u_int bufnum=edt_done_count(edt_p);

edt_get_timestamp(edt_p, timestamp, bufnum);

Return
0 on success, -1 on failure. Fills in timestamp pointed to by timep.
See Also
edt_timestamp(), edt_done_count(), edt_wait_buffers_timed

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 31

PCI 16D

edt_get_reftime
Description
Gets the seconds and microseconds timestamp in the same format as the buffer_timed functions. Used
for debugging and coordinating dma completion time with other events.
Syntax
int edt_get_reftime(EdtDev *edt_p, u_int *timep)

Arguments
edt_p device struct returned from edt_open
timep pointer to an unsigned integer array
bufnum buffer index, or number of buffers completed

Example
int timestamp[2];

edt_get_regtime(edt_p, timestamp);

Return
0 on success, -1 on failure. Fills in timestamp pointed to by timep.
See Also
edt_timestamp(), edt_done_count(), edt_wait_buffers_timed

edt_ref_tmstamp
Description
Used for debugging and viewing a history with setdebug -g with an application-defined event in the
same timeline as driver events.
Syntax
int edt_ref_tmstamp(EdtDev *edt_p, u_int val)

Arguments
edt_p device struct returned from edt_open
val an arbitrary value meaningful to the application

Example
#define BEFORE_WAIT 0x11212aaaa

#define AFTER_WAIT 0x3344bbbb

u_char *buf;

edt_ref_tmstamp(edt_p, BEFORE_WAIT);

buf=edt_wait_for_buffer(edt_p);

edt_reg_tmstamp(edt_p, AFTER_WAIT);

/* now look at output of setdebug -g */

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 32

PCI 16D

Return
0 on success, -1 on failure.
See Also
documentation on setdebug

edt_get_burst_enable
Description
Returns the value of the burst enable flag, determining whether the DMA master transfers as many
words as possible at once, or transfers them one at a time as soon as the data is acquired. Burst transfers
are enabled by default to optimize use of the bus. For more information, see edt_set_burst_enable on
page 33.
Syntax
#include "edtinc.h"

int edt_get_burst_enable(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
A value of 1 if burst transfers are enabled; 0 otherwise.

edt_set_burst_enable
Description
Sets the burst enable flag, determining whether the DMA master transfers as many words as possible at
once, or transfers them one at a time as soon as the data is acquired. Burst transfers are enabled by
default to optimize use of the bus; however, you may wish to disable them if data latency is an issue, or
for diagnosing DMA problems.
Syntax
#include "edtinc.h"

void edt_set_burst_enable(EdtDev *edt_p, int onoff);

Arguments
edt_p device handle returned from edt_open or edt_open_channel
onoff A value of 1 turns the flag on (the default); 0 turns it off.

Return
No return value.

edt_get_firstflush
Description
Returns the value set by edt_set_firstflush(). This is an obsolete function that was only used as a kludge
to detect EDT_ACT_KBS (also obsolete).

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 33

PCI 16D

Syntax
int edt_get_firstflush(EdtDev *edt_p)

Arguments
edt_p device struct returned from edt_open.

Example
int application_should_already_know_this;

application_should_already_know_this=edt_get_firstflush(edt_p);

Return
Yes
See Also
edt_set_firstflush

edt_set_firstflush
Description
Tells whether and when to flush the FIFOs before DMA transfer. By default, the FIFOs are not flushed.
However, certain applications may require flushing before a given DMA transfer, or before each
transfer.
Syntax
#include "edtinc.h"

int *edt_set_firstflush(EdtDev *edt_p, int flag) ;

Arguments
edt_p device handle returned from edt_open or edt_open_channel.
flag Tells whether and when to flush the FIFOs. Valid values are:

EDT_ACT_NEVER don’t flush before DMA transfer (default)
EDT_ACT_ONCE flush before the start of the next DMA transfer

EDT_ACT_ALWAYS flush before the start of every DMA transfer

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_flush_fifo
Description
Flushes the board’s input and output FIFOs, to allow new data transfers to start from a known state.
Syntax
#include "edtinc.h"

void edt_flush_fifo(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 34

PCI 16D

Return
No return value.

edt_get_goodbits
Description
Returns the current number of good bits in the last long word of a read buffer (0 through 31).
Syntax
#include "edtinc.h"

int edt_get_goodbits(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
Number 0–31 represents the number of good bits in the 32-bit word of the current read buffer.

edt_set_event_func
Description
Defines a function to call when an event occurs. Use this routine to send an application-specific
function when required; for example, when DMA completes, allowing the application to continue
executing until the event of interest occurs.
If you wish to receive notification of one event only, and then disable further event notification, send a
final argument of 0 (see the continue parameter described below). This disables event notification at the
time of the callback to your function.
Syntax
#include "edtinc.h"

int edt_set_event_func(EdtDev *edt_p, int event, void (*func)(void
*),
 void *data, int continue);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

The event that causes the function to be called. Valid events are:

Event Description Board

EDT_PDV_EVENT_ACQUIRE Image has been acquired;
shutter has closed; subject
can be moved if necessary;
DMA will now restart

PCI DV,
PCI DVK,
PCI FOI

EDT_PDV_EVENT_FVAL Frame Valid line is set PCI DV,
PCI DVK

EDT_EVENT_P16D_DINT Device interrupt occurred PCI 16D

event

EDT_EVENT_P11W_ATTN Attention interrupt occurred PCI 16D

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 35

PCI 16D

 EDT_EVENT_P11W_CNT Count interrupt occurred PCI 16D
EDT_EVENT_PCD_STAT1 Interrupt occurred on Status 1

line
PCI CD

EDT_EVENT_PCD_STAT2 Interrupt occurred on Status 2
line

PCI CD

EDT_EVENT_PCD_STAT3 Interrupt occurred on Status 3
line

PCI CD

EDT_EVENT_PCD_STAT4 Interrupt occurred on Status 4
line

PCI CD

EDT_EVENT_ENDDMA DMA has completed ALL
func The function you’ve defined to call when the event occurs.
data Pointer to data block (if any) to send to the function as an argument; usually

edt_p.
continue Flag to enable or disable continued event notification. A value of 0 causes

an implied edt_remove_event_func as the event is triggered.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_remove_event_func
Description
Removes an event function previously set with edt_set_event_func.
Note This routine is implemented on PCI Bus platforms only.

Syntax
#include "edtinc.h"

int edt_remove_event_func(EdtDev *edt_p, int event);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.
event The event that causes the function to be called. Valid events are as listed in

edt_set_event_func on page 35.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_reg_read
Description
Reads the specified register and returns its value. Use this routine instead of using ioctls.
Syntax
#include "edtinc.h"

uint edt_reg_read(EdtDev *edt_p, uint address);

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 36

PCI 16D

Arguments
edt_p device handle returned from edt_open or edt_open_channel
address The name of the register to read. Use the names provided in the register

descriptions in the section entitled “Hardware.”

Return
The value of the register.

edt_reg_write
Note Use this routine with care; it writes directly to the hardware. An incorrect value can crash

your system, possibly causing loss of data.

Description
Write the specified value to the specified register. Use this routine instead of using ioctls.
Syntax
#include "edtinc.h"

void edt_reg_write(EdtDev *edt_p, uint address, uint value);

Arguments
edt_p device handle returned from edt_open or edt_open_channel
address The name of the register to write. Use the names provided in the register

descriptions in the section entitled “Hardware.”
value The desired value to write in the register.

Return
No return value.

edt_reg_and
Note Use this routine with care; it writes directly to the hardware. An incorrect value can crash

your system, possibly causing loss of data.

Description
Performs a bitwise logical AND of the value of the specified register and the value provided in the
argument; the result becomes the new value of the register. Use this routine instead of using ioctls.
Syntax
#include "edtinc.h"

uint edt_reg_and(EdtDev *edt_p, uint address, uint mask);

Arguments
edt_p device handle returned from edt_open or edt_open_channel
address The name of the register to modify. Use the names provided in the register

descriptions in the section entitled “Hardware.”
mask The value to AND with the register.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 37

PCI 16D

Return
The new value of the register.

edt_reg_or
Note Use this routine with care; it writes directly to the hardware. An incorrect value can crash

your system, possibly causing loss of data.

Description
Performs a bitwise logical OR of the value of the specified register and the value provided in the
argument; the result becomes the new value of the register. Use this routine instead of using ioctls.
Syntax
#include "edtinc.h"

uint edt_reg_or(EdtDev *edt_p, uint address, uint mask);

Arguments
edt_p device handle returned from edt_open or edt_open_channel
address The name of the register to modify. Use the names provided in the register

descriptions in the section entitled “Hardware.”
mask The value to OR with the register.

Return
The new value of the register.

edt_get_foicount
Description
Returns the number of RCI modules connected to the EDT FOI (fiber optic interface) board.
Syntax
int edt_get_foicount(EdtDev *edt_p)

Arguments
edt_p device struct returned from edt_open

Example
int num-rcis;

num_rcia=edt_get_foicount(edt_p);

Return
Integer
See Also
edt_set_foiunit(), edt_get_foiunit(), edt_set_foicount()

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 38

PCI 16D

edt_set_foicount
Description
Sets which RCI unit to address with subsequent serial and register read/write functions. Used with the
PDV FOI.
Syntax
int edt_set_foicount(EdtDev *edt_p, int unit)

Arguments
edt_p device struct returned from edt_open
unit unit number of RCI unit

Example
int nextunit;

nextunit=3;

edt_set_foiunit(edt_p, nextunit);

Return
0 on success, -1 on failure
See Also
pdv_serial_write(), edt_reg_write(), edt_reg_read(), pdv_serial_read()

edt_intfc_write
Description
A convenience routine, partly for backward compatability, to access the XILINX interface registers.
The register descriptors used be edt_reg_write() can also be used, since edt_intfc_write masks off the
offset.
Syntax
void edt_intfc_write(EdtDev *edt_p, uint_t offset, uchar_t val)

Arguments
edt_p device struct returned from edt_open
offset integer offset into XILINX interface, or register descriptor
val unsigned character value to set

Example
u_char fnct1=1;

edt_intfc_write(edt_p, PCD_FUNCT, fnct1);

Return
void
See Also
edt_intfc_read(), edt_reg_write(), edt_intfc_write_short()

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 39

PCI 16D

edt_intfc_read
Description
A convenience routine, partly for backward compatability, to access the XILINX interface registers.
The register descriptors used be edt_reg_write() can also be used, since edt_intfc_read masks off the
offset.
Syntax
u_char

edt_intfc_read(EdtDev *edt_p, uint_t offset)

Arguments
edt_p device struct returned from edt_open
offset integer offset into XILINX interface, or register descriptor
val unsigned character value to set

Example
u_char rfnct=edt_intfc_read(edt_p, PCD_FUNCT);

Return
void
See Also
edt_intfc_write(), edt_reg_read(), edt_intfc_read_short()

edt_intfc_write_short
Description
A convenience routine, partly for backward compatability, to access the XILINX interface registers.
The register descriptors used be edt_reg_write() can also be used, since edt_intfc_write_short masks off
the offset.
Syntax
void edt_intfc_write_short(EdtDev *edt_p, uint_t offset, u_short val)

Arguments
edt_p device struct returned from edt_open
offset integer offset into XILINX interface, or register descriptor
val unsigned character value to set

Example
u_short width=1024;

edt_intfc_write_short(edt_p, CAM_WIDTH, width);

Return
void
See Also
edt_intfc_write(), edt_reg_write()

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 40

PCI 16D

edt_intfc_read_short
Description
A convenience routine, partly for backward compatability, to access the XILINX interface registers.
The register descriptors used be edt_reg_write() can also be used, since edt_intfc_read_short masks off
the offset.
Syntax
u_short

edt_intfc_read_short(EdtDev *edt_p, unit_t offset)

Arguments
edt_p device struct returned from edt_open
offset integer offset into XILINX interface, or register descriptor
val unsigned character value to set

Example
u_short r_camw=edt_intfc_read_short(edt_p, CAM_WIDTH);

Return
void
See Also
edt_intfc_read(), edt_reg_read()

edt_intfc_write_32
Description
A convenience routine, partly for backward compatability, to access the XILINX interface registers.
The register descriptors used be edt_reg_write() can also be used, since edt_intfc_write_32 masks off
the offset.
Syntax
void edt_intfc_write_32(EdtDev *edt_p, uint_t offset, unit_t val)

Arguments
edt_p device struct returned from edt_open
offset integer offset into XILINX interface, or register descriptor
val unsigned character value to set

Example
u_int value=0x12345678;

edt_intfc_write_32(edt_p, MAGIC_OFF1, value);

Return
void
See Also
edt_intfc_read_32(), edt_reg_write()

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 41

PCI 16D

edt_intfc_read_32
Description
A convenience routine, partly for backward compatability, to access the XILINX interface registers.
The register descriptors used be edt_reg_write() can also be used, since edt_intfc_read_32 masks off
the offset.
Syntax
uint_t

edt_intfc_read_32(EdtDev *edt_p, uint_t offset)

Arguments
edt_p device struct returned from edt_open
offset integer offset into XILINX interface, or register descriptor
val unsigned character value to set

Example
u_int r_actkbs=edt_intfc_read_32(edt_p, EDT_ACT_KBS);

Return
void

edt_msleep
Description
Causes the process to sleep for the specified number of microseconds.
Syntax
#include "edtinc.h"

int edt_microsleep(u_int usecs) ;

Arguments
usecs The number of microseconds for the process to sleep.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_alloc
Description
Convenience routine to allocate memory in a system-independent way. The buffer returned is page
aligned. Uses VirtualAlloc on Windows systems, valloc on UNIX-based systems.
Syntax
#include "edtinc.h"

int
edt_alloc(int nbytes)

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 42

PCI 16D

Arguments
nbytes number of bytes of memory to allocate.

Example
unsigned char *buf = edt_alloc(1024);

Returns
The address of the allocated memory, or NULL on error. If NULL, use edt_perror on page 43 to print
the error.

edt_free
Description
Convenience routine to free the memory allocated with pdv_alloc (above).
Syntax
#include "edtinc.h"

int
edt_free(unsigned char *buf)

Arguments
buf Address of memory buffer to free.

Example
edt_free(buf);

Returns
0 if successful, –1 if unsuccessful.

edt_perror
Description
Formats and prints a system error.
Syntax
#include "edtinc.h"

void
edt_perror(char *errstr)

Arguments
errstr Error string to include in the printed error output.

Return
No return value. See edt_errno below for an example.

edt_errno
Description
Returns an operating system-dependent error number.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 43

PCI 16D

Syntax
#include "edtinc.h"

int
edt_errno(void)

Arguments
None.
Return
32-bit integer representing the operating system-dependent error number generated by an error.
Example
if ((edt_p = edt_open("p11w",0))==NULL
{
 int error_num;

 edt_perror("edt_open");
 error_num = edt_errno(edt_p);
}

edt_access
Description
Determines file access, independent of operating system. This a convenience routine that maps to
acccess() on Unix/Linus systems and _access() on Windows systems.
Syntax
int edt_access(char *fname, int perm)

Arguments
edt_p device struct returned from edt_open
fname path name of the file to check access permissions
perm permission flag(s) to test for. See access() (Unix/Linux) or _access()

(Windows) for valid values.

Example
if(edt_access(“file.ras”, F_OK))

printf(“Warning: overwriting file %s\n”);

Return
0 on success, -1 on failure

edt_get_bitpath
Description
Obtains pathname to the currently loaded interface bitfile from the driver. The program “bitload” sets
this string in the driver when an interface bitfile is successfully loaded.
Syntax
#include “edtinc.h”

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 44

PCI 16D

int edt_get_bitpath(EdtDev *edt_p, char *bitpath, int size);

Arguments
edt_p device handle returned from edt_open or edt_open_channel
bitpath address of a character buffer of at least 128 bytes
size number of bytes in the above character buffer

Return
0 on success, -1 on failure

EDT Message Handler Library
The edt error library provides generalized error and message handling for the edt and pdv libraries. The
primary purpose of the routines is to provide a method for application programs to intercept and handle
edtlib and pdvlib error, warning debug messages, but can also be used for application messages.
By default, output goes to the console (stdout), but user defined functions can be substituted. For
example, a function that pops up a window and displays the text in that window. Different message
levels can be set for different output, and multiple message handles can even exist within an
application, with different message handlers associated with them.

Message Definitions

User application messages
EDTAPP_MSG_FATAL
EDTAPP_MSG_WARNING
EDTAPP_MSG_INFO_1
EDTAPP_MSG_INFO_2

Edtlib messages
EDTLIB_MSG_FATAL
EDTLIB_MSG_WARNING
EDTLIB_MSG_INFO_1
EDTLIB_MSG_INFO_2

Pdvlib messages
PDVLIB_MSG_FATAL
PDVLIB_MSG_WARNING
PDVLIB_MSG_INFO_1
PDVLIB_MSG_INFO_2

Library and application messages
EDT_MSG_FATAL (defined as EDTAPP_MSG_FATAL | EDTLIB_MSG_FATAL |
PDVLIB_MSG_FATAL)
EDT_MSG_WARNING (defined as EDTAPP_MSG_WARNING |
EDTLIB_MSG_WARNING | PDVLIB_MSG_WARNING)

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 45

PCI 16D

EDT_MSG_INFO_1 (defined as EDTAPP_MSG_INFO_1 | EDTLIB_MSG_INFO_2 |
PDVLIB_MSG_INFO_2)
EDT_MSG_INFO_2 (defined as EDTAPP_MSG_INFO_2 | EDTLIB_MSG_INFO_2 |
PDVLIB_MSG_INFO_2)

Message levels are defined by flag bits, and each bit can be set or cleared individually. So for
example if you want a message handler to be called for fatal and warning application messages
only, you would specify EDTAPP_MSG_FATAL | EDTAPP_MSG_WARNING.
As you can see, the edt and pci dv libraries have their own message flags. These can be turned
on and off from within an application, and also by setting the environment variables
EDTDEBUG and PDVDEBUG, respectively, to values greater than zero.
Application programs would normally specify combinations of either the EDTAPP_MSG_ or
EDT_MSG flags for their messages.

Files

edt_error.h: header file (automatically included if edtinc.h is included)
edt_error.c: message subroutines
The EdtMsgHandler structure is defined in edt_error.h. Application programmers should not access
structure elements directly; instead always go through the error subroutines.

edt_msg_init
Description
Initializes a message handle to defaults. The message file is initialized to stderr. The output subroutine
pointer is set to fprintf (console output). The message level is set to EDT_MSG_WARNING |
EDT_MSG_FATAL.
Syntax
void edt_msg_init(EdtMsgHandler *msg_p)

Arguments
msg_p pointer to message handler structure to initialize

Return
Void
Example
EdtMsgHandler msg_p;

edt_msg_init(&msg_p);

See Also
edt_msg_output

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 46

PCI 16D

edt_msg
Description
Submits a message to the default message handler, which will conditionally (based on the flag bits)
send the message as an argument to the default message handler function. Uses the default message
handle, and is equivalent to calling edt_msg_output(edt_msg_default_handle(), ...). To submit a
message for handling from other than the default message handle, use edt_msg_output.
Syntax
int edt_msg(int level, char *format, ...)

Arguments
level an integer variable that contains flag bits indicating what 'level' message it is.

Flag bits are described in the overview.
format a string and arguments describing the format. Uses vsprintf to print

formatted text to a string, and sends the result to the handler subroutine.
Refer to the printf manual page for formatting flags and options.

Return
Void
Example
edt_msg(EDTAPP_MSG_WARNING, "file '%s' not found", fname);

edt_msg_output
Description
Submits a message using the msg_p message handle, which will conditionally (based on the flag bits)
send the message as an argument to the handle's message handler function. To submit a message for
handling by the default message handle, edt_msg.
Syntax
int edt_msg_output(EdtMsgHandler *msg_p, int level, char *format,
...)

Arguments
msg_p pointer to message handler, initiailzed by edt_msg_init
level an integer variable that contains flag bits indicating what 'level' message it is.

Flag bits are described in the overview.
format a string and arguments describing the format. Uses vsprintf to print

formatted text to a string, and sends the result to the handler subroutine.
Refer to the printf manual page for formatting flags and options.

Return
Void
Example
EdtMsgHandler msg_p;

edt_msg_init(&msg_p);

edt_msg_set_function(msg_p, (EdtMsgFunction *)my_error_popup);

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 47

PCI 16D

edt_msg_set_level(msg_p, EDT_MSG_FATAL | EDT_MSG_WARNING);

if (edt_access(fname, 0) != 0)

 edt_msg_output(msg_p, EDTAPP_MSG_WARNING, "file '%s' not
found", fname);

edt_msg_close
Description
Closes and frees up memory associated with a message handle. Use only on message handles that have
been explicitly initialized by edt_msg_init. Do not try to close the default message handle.
Syntax
int edt_msg_close(EdtMsgHandler *msg_p)

Arguments
msg_p the message handle to close

Return
0 on success, -1 on failure

edt_msg_set_level
Description
Sets the "message level" flag bits that determine whether to call the message handler for a given
message. The flags set by this function are ANDed with the flags set in each edt_msg call, to determine
whether the call goes to the message function and actually results in any output.
Syntax
void edt_msg_set_level(EdtMsgHandler *msg_p, int newlevel)

Arguments
msg_p the message handle

Example
edt_msg_set_level(edt_msg_default_level(),
EDT_MSG_FATAL|EDT_MSG_WARNING);

Return
Void

edt_msg_set_function
Description
Sets the function to call when a message event occurs. The default message function is printf (outputs
to the console); edt_msg_set_function allows programmers to substitute any type of message handler
(pop-up callback, file write, etc).
Syntax
void edt_msg_set_function(EdtErrorFunction f)

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 48

PCI 16D

Arguments
msg_p the message handle

Example
See edt_msg

Return
Void
See Also
edt_msg, edt_msg_set_level

edt_msg_set_msg_file
Description
Sets the output file pointer for the message handler. Expects a file handle for a file that is already open.
Syntax
void edt_msg_set_msg_file(EdtMsgHandler *msg_p, FILE *fp)

Arguments
msg_p the message handle
p pointer to a file handle that is already open, to which the messages should

be output

Example
EdtMsgHandler msg_p;

 FILE *fp = fopen("messages.out", "w");

 edt_msg_init(&msg_p);

 edt_msg_set_file(&msg_p, fp);

Return
Void

edt_msg_perror
Description
Conditionally outputs a system perror using the default message pointer.
Syntax
int edt_msg_perror(int level, char *msg)

Arguments
level message level, described in the overview
msg message to concatenate to the system error

Example
if ((fp = fopen ("file.txt", "r")) == NULL)

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 49

PCI 16D

edt_sysperror(EDT_FATAL, "file.txt");

Return
0 on success, -1 on failure
See Also
edt_perror

The following routines are specific to the PCI 16D:

Routine Description
p16d_set_command Sets the value of the Command register.
p16d_get_command Gets the value of the Command register.
p16d_set_config Sets the value of the Configuration register.
p16d_get_config Gets the value of the Configuration register.
p16d_get_stat Gets the value of the Status register.

p16d_set_command
Description
Sets the value of the Command register.
Syntax
#include “edtinc.h”

void p16d_set_command(EdtDev *edt_p, u_short val);

Arguments
edt_p device handle returned from edt_open
val Command register value you want to set

Example
u_short val;

val = p16d_get_command(edt_p);
val |= P16D_INIT;
p16d_set_command(edt_p, val);

Return
None

p16d_get_command
Description
Gets the value in the Command register.
Syntax
#include “edtinc.h”

u_short p16d_get_command(EdtDev *edt_p);

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 50

PCI 16D

Arguments
edt_p device handle returned from edt_open

Return
Unsigned short containing the value currently in the Command register.

p16d_set_config
Description
Sets the value of the Configuration register.
Syntax
include “edtinc.h”

void p16d_set_config(EdtDev *edt_p, u_short val);

Arguments
edt_p device handle returned from edt_open
val Configuration register value you want to set

Example
u_short val;

val = p16d_get_config(edt_p);
val |= P16D_SWAP;
p16d_set_config(edt_p, val);

Return
None

p16d_get_config
Description
Gets the value in the Configuration register.
Syntax
#include “edtinc.h”

u_short p16d_get_config(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open

Return
Unsigned short containing the value currently in the Configuration register.

p16d_get_stat
Description
Gets the value in the Status register.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 51

PCI 16D

Syntax
#include “edtinc.h”

u_short p16d_get_stat(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open

Return
Unsigned short containing the value currently in the Status register.
Example
u_short stat;

stat = p16d_get_stat(edt_p);

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 52

PCI 16D

Hardware
This section describes the PCI 16D interface, registers, connectors, and timing. The following figure is
a diagram of the PCI 16D interface:

PCI Local Bus Interface

The interface to the PCI Local Bus supports data transfer at 2, 4 and 16 bytes per request. The interface
is implemented using programmable logic and high-speed register files. The PCI Local Bus DMA
address is maintained in an application-specific integrated circuit (ASIC).

FIFO
The PCI 16D uses First-In-First-Out (FIFO) memory to buffer the data flow to and from the PCI Local
Bus. These FIFOs can store up to 128 bytes.

Device Interface
The device interface is implemented with Unibus Driver/Receivers and 180/390 terminators. The
receivers have a 1 V hysteresis and 2V noise immunity. The drivers are open-collector type. The device
handshake and control are implemented in the ASIC.
See the section entitled “Signals” on page 55 for further details on device signal usage.

Logic Levels
The PCI 16D uses the DEC Unibus drivers and receivers. These parts have Schmitt trigger inputs and a
switching threshold set to equalize high and low noise margins. You can use TTL devices for short
distances, but we do not recommend it. The drivers are inverting open-collector drivers, capable of
driving the required 123-Ω terminating networks at each cable end.
The recommended parts for the drivers are:
• the National Semiconductor DS8838 Quad Driver/Receiver, and
• the National Semiconductor DS8837 Hex Receiver.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 53

PCI 16D

The following figure shows the configuration of the PCI 16D drivers.

Document Number: 008-00969-00
Template: edt.dot

+5
0

180
8837

39

EDT Public
8838
OR
Revision: A February 2004
Page 54

PCI 16D

Signals
This section describes the kinds of signals the PCI 16D uses, how they are connected, and a suggestion
for using the signals in your application for data input and output.

Connector Pinout

The PCI 16D uses a high-density 80-pin I/O connector. The pinout and construction of this connector
adapts easily to standard 40-pin, .100 x .100 connectors.
The high-density mating connector is an AMP connector, AMP part number 749111-7, with a straight-
shielded backshell (AMP P/N 749196-1) or right angle backshell (AMP P/N 749205-1). The pinout
described in the table below ensures that the high density connector and the P1 and P2 connectors of
the EDT cable mate directly with standard 40-pin connectors.
Interpret the connector pinout table below in one of the following ways, depending upon the type of
cable you are using.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 55

PCI 16D

AMP STD P1 Signal AMP STD P2 Signal
1 1 DO15 41 1 DI15
2 2 DO00 42 2 DI00
3 3 DO14 43 3 DI14
4 4 DO01 44 4 DI01
5 5 DO13 45 5 DI13
6 6 DO02 46 6 DI02
7 7 DO12 47 7 DI12
8 8 DO03 48 8 DI03
9 9 DO11 49 9 DI11
10 10 DO04 50 10 DI04
11 11 DO10 51 11 DI10
12 12 DO05 52 12 DI05
13 13 DO09 53 13 DI09
14 14 DO06 54 14 DI06
15 15 DO08 55 15 DI08
16 16 DO07 56 16 DI07
17 17 GROUND 57 17 NC
18 18 GROUND 58 18 GROUND
19 19 RSVD IN 59 19 GROUND
20 20 GROUND 60 20 GROUND
21 21 RDSTRBL 61 21 OUTVALIDL
22 22 GROUND 62 22 GROUND
23 23 STAUS C 63 23 FNCT0
24 24 GROUND 64 24 GROUND
25 25 STATUS C 65 25 RSVD IN
26 26 GROUND 66 26 GROUND
27 27 STATUS B 67 27 FNCT1
28 28 GROUND 68 28 GROUND
29 29 DEVINIT L 69 29 RSVD IN
30 30 GROUND 70 30 GROUND
31 31 STATUS A 71 31 FNCT2
32 32 NC 72 32 FNCT2
33 33 RSVD IN 73 33 RSVD IN
34 34 GROUND 74 34 GROUND
35 35 SDMAEN L 75 35 RSVD IN
36 36 GROUND 76 36 GROUND
37 37 DMAINPUT L 77 37 DEVINT L
38 38 GROUND 78 38 GROUND
39 39 DCLKL P 79 39 DACK P
40 40 GROUND 80 40 GROUND

Table 1. PCI 16D (p16d_3v.bit, p16d_5v.bit)

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 56

PCI 16D

The following tables describe each signal by name, I/O type, and polarity. An I in the table indicates
the signal is an input to the PCI 16D, and an O indicates a PCI 16D output. An H indicates the signal
performs the function described in the table at a logic high (or +3 V). An L indicates the signal
performs the named function at a logic low. A P indicates the signal is programmable.

Handshake Signals
These five signals perform the PCI 16D transfer cycle.

Name I/O Assert Description
DCLK I P The device asserts DCLK to initiate a transfer. The edge of DCLK is

used to transfer data, and the DCLK pulse must be at lieast 80 ns wide.
The polarity of the DCLK edge is determined by the CLKP bit in the
Configuration register.

DACK O P DACK is the data transfer acknowledge. DACK is asserted by the PCI
16D in response to a DCLK and is negated when the transfer is
complete. The polarity of DACK assertion is controlled by the DACKP bit
in the Configuration register.

DMAINPUT O L DMAINPUT is asserted low when the PCI 16D is programmed to receive
DMA input dat on the DI[0-15] inputs.

OUTVALID O L OUTVALID is asserted low when data from the DO[0-15] outputs is
valid. In DMA input mode you can use OUTVALID to qualify outputs for
programmed I/O. In DMA output mode, OUTVALID indicates you can
clock out valid data with DCLK.

SDMAEN O L SDMAEN is asserted low during the actual DMA transfers on the PCI
Local Bus. You can use SDMAEN to qualify DMAINPUT in applications
in which the transfer direction changes.

RSTRB O L RSTRB is an 80 ns (minimum) pulse that indicates the PCI Local Bus
host has read the DIN signals under program control.

Data Signals
The following table describes the 32 signals that transfer the data. Inputs and outputs are separate for
maximum flexibility. The drivers are open-collector, so you can tie the input to the output for a bi-
directional bus. For bi-directional operation, write a value of 1 to any output you want to use as a bus
input. To use the entire output register as an input bus, write the value FFFF (hexadecimal) to the
output register to turn off all output drivers.

Name I/O Assert Description
DIN[0-15] I H Input data
DOUT[0-15] O H Output data

Synchronous Control Signals
The following table describes the six signals controlling the synchronous DMA transfer cycle. Each
signal controls a device or indicates device status. Devices can implement these signals as required for
device applications.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 57

PCI 16D

Name I/O Assert Description
FNCT0 O H Output for device control, set with FNCT0 in Command register.
FNCT1 O H Output for device control, set with FNCT1 in Command register.
FNCT2 O H Output for device control, set with FNCT2 in Command register.
STATA I H Input for device status, read with STATA in Status register.
STATB I H Input for device status, read with STATB in Status register.
STATC I H Input for device status, read with STATC in Status register.

Asynchronous Control Signals
The following table describes the two signals controlling the device and host operating state,
asynchronous with the control signals.

Name I/O Assert Description
DEVINT I L Interrupt the PCI Local Bus host if this signal is enabled in the

Configuration and Command registers. Sensitive to negative edge.
DEVINIT O L If used, DEVINIT is typically connected in the user device and used to

reset the device from the PCI 16D Command register.

Timing
The following diagram shows the timing for the PCI 16D interface. The timing parameters shown in
the diagram refer to the PCI 16D during DMA transfers, in response to read or write system calls.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 58

PCI 16D

The following table shows the PCI 16D timing specifications.

Timing Parameter Minimum Maximum
DCLK Pulse Width 80 ns DC
DACK Pulse Width 70 ns
DCLK Assert to DACK Assert 80 ns 140 ns
OUTVALID Pulse Width 30 ns
DOUT Valid after DACK false 0 40 ns
DIN Setup to DCLK Assertion –40 ns

Using the Signal for Data I/O
You can implement an interface hadshake in a programmed logic device. Use the following steps to set
up the interface and the properties of the resulting handshake:
1. Pulse DEVINIT low to initialize the interface.
2. Determine the DMA direction from the state of DMAINPUT at the first high-to-low SDMAEN

transition.
3. To input data to the PCI 16D, assert the first DCLK as soon as the data is available from the

device. The data has a negative setup time with DCLK, so you can output data with DCLK while
the device generates the next data.

4. The first output data from the PCI 16D, if any, is valid on the DOUT signals 40 ns after
OUTVALID goes low. You can assert DCLK as soon as the device accepts this data.

5. If the input FIFO becomes full, or the output FIFO becomes empty, the DACK signal stays low
until the FIFO or data are again available. The OUTVALID signal pulses high approximately 30 ns
between data words as long as new data is available. Over long cables, the OUTVALID pulse can
be too short to use as a handshake signal; use DACK to qualify data over long cables.

6. Use DINT from the device to direct the PCI 16D to terminate DMA, or use the DINIT or FUNC
signals from the PCI 16D to direct the device to terminate transfers.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 59

PCI 16D

Registers
The PCI 16D has two memory spaces: the memory-mapped registers and the configuration space.
Expansion ROM and I/O space are not implemented.
Applications can access the PCI 16D registers through the DMA library routines edt_reg_read or
edt_reg_write using the name specified under “Access,” or if necessary by means of ioctl() calls
with PCI 16D-specific parameters, as defined in the file p16d.h.

Configuration Space
The configuration space is a 64-byte portion of memory required to configure the PCI Local Bus and to
handle errors. Its structure is specified by the PCI Local Bus specification. The structure as
implemented for the PCI 16D is as shown in Figure 6 and described below.

Address Bits 31 16 15 0

0x00 Device ID: 0x01 Vendor ID = 0x123D

0x04 Status (see below) Command (see below)

0x08 Class Code = 0x088000 Revision ID = 0
(will be updated)

0x0C BIST = 0x00 Header Type =
0x00

Latency Timer
(set by OS)

Cache Line Size
(set by OS)

0x10 DMA Base Address Register* (set by OS)

 not implemented

0x3C Max_Lat = 0x04 Min_Gnt = 0x04 Interrupt Pin =
0x01

Interrupt Line (set
by OS)

Figure 2. Configuration Space Addresses
Values for the status and command fields are shown in the following two tables. For complete
descriptions of the bits in the status and command fields, see the PCI Local Bus Specification, Revision
2.1, available from:
PCI Special Interest Group
5440 SW Westgate Drive Suite 217
Portland, OR 97221
Phone: 800/433-5177 (United States) or 425/803-1191 (international)
Fax: 503/222-6190
www.pcisig.com

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 60

http://www.pcisig.com/

PCI 16D

Bit Name Value Bit Name Value

0–4 reserved 0 10 DEVSEL Timing 0

5 66 MHz Capable 0 11 Signaled Target Abort implemented

6 UDF Supported 0 12 Received Target Abort implemented

7 Fast Back-to-back
Capable

0 13 Received Master Abort implemented

8 Data Parity Error
Detected

implemented 14 Signaled System Error implemented

9 DEVSEL Timing 1 15 Detected Parity Error implemented

Table 3. Configuration Space Status Field Values

Bit Name Value Bit Name Value

0 IO Space 0 6 Parity Error Response implemented

1 Memory Space implemented 7 Wait Cycle Control 0

2 Bus Master implemented 8 SERR# Enable implemented

3 Special Cycles 0 9 Fast Back-to-back
Enable

implemented

4 Memory Write and
Invalidate Enable

0 10–
15

reserved 0

5 VGA Palette Snoop 0

Table 4. Configuration Space Command Field Values

PCI Local Bus Addresses
The following figure describes the PCI 16D interface registers in detail. The addresses listed are offsets
from the gate array boot ROM base addresses. This base address is initialized by the host operating
system at boot time.
Note: The addresses 0x80 and 0x84 are used by the pciload utility to update the gate array. User
applications must not modify use these registers. Results of running pciload do not take effect until
after the board has been turned off and then on again.

Address Bits 31 16 15 0

0xC8 data status
0xC4 configuration command
0x84 not used flash ROM data

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 61

PCI 16D

0x80 flash ROM address
0x20 not used

0x1C scatter-gather DMA next count and control
0x18 scatter-gather DMA current count and control
0x14 scatter-gather DMA next address
0x10 scatter-gather DMA current address
0x0C main DMA next count and control
0x08 main DMA current count and control
0x04 main DMA next address

 3 2 1 0 Byte Word

 1 0

Table 5. PCI Local Bus Addresses

Scatter-gather DMA
PCI Direct Memory Access (DMA) devices in Intel-based computers access memory using physical
addresses. Because the operating system uses a memory manager to connect the user program to
memory, memory pages that appear contiguous to the user program are actually scattered throughout
physical memory. Because DMA accesses physical addresses, a DMA read operation must gather data
from noncontiguous pages, and a write must scatter the data back to the appropriate pages. The EDT
Product driver uses information from the operating system to accomplish this. The operating system
passes the driver a list of the physical addresses for the user program memory pages. With this
information, the driver builds a scatter-gather (SG) table, which the DMA device uses sequentially.
Most other PCI computers offer memory management for the PCI bus as well, so the operating system
needs to pass only the address and count for DMA. The addresses appear contiguous to the PCI bus.
The scatter-gather DMA list is stored in memory. The scatter-gather DMA channel copies it as required
into the main DMA registers. The format of the DMA list in memory is as follows (illustrated in the
following table):
• Each page entry takes eight bytes. Therefore, the scatter-gather DMA count is always evenly

divisible by eight.
• The first word consists of the 32-bit start address of a memory page.
• The most significant 16 bits of the second word contain control data.
• The least significant 16 bits of the second word contain the count.
As of the current release, only bit 16 contains control information. When set to one, and when enabled
by setting bit 28 of the Scatter-gather DMA Next Count and Control register, this bit causes the main
DMA interrupt to be set when the marked page is complete.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 62

PCI 16D

Bits 63 32 31 16 0

Each entry address control (unused) DMA int count

Performing DMA

All main DMA registers are read-only. Only the corresponding scatter-gather DMA registers must
write to them. To initiate a DMA transfer:
1. Set up one or more scatter-gather DMA lists in host memory, using the format described above and

illustrated in the table above.
2. Write the address of the first entry in the list to the Scatter-gather Next DMA Address register.
3. Write the length of the scatter-gather DMA list to the Scatter-gather Next DMA Count and Control

register, setting the interrupts as you require. Ensure that bit 29 of this register is set to 1—this
starts the DMA.

4. If the DMA list is greater than one page, load the address of the first entry of the next page and its
length, as described in steps 2 and 3, when bit 29 of the Scatter-gather Next DMA Count and
Control register is asserted.

Main DMA Current Address Register

Size 32-bit

I/O read-only

Address 0x00

Access EDT_DMA_CUR_ADDR

Comments Automatically copied from the main DMA next address register after main
DMA completes.

Bit Description
A31–0 The address of the current DMA or the last used address if no DMA is currently

active.

Main DMA Next Address Register

Size 32-bit

I/O read-only

Address 0x04 + (channel number x 20 hex)

Access EDT_DMA_NXT_ADDR

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 63

PCI 16D

Comments The scatter-gather DMA fills this register when required from the scatter-
gather DMA list.

Bit Description
A31–0 Read the starting address of the next DMA.

Main DMA Current Count and Control Register

Size 32-bit

I/O read-only

Address 0x08

Access EDT_DMA_CUR_CNT

Comments This register automatically copied from the main DMA next count and
control register after main DMA completes.

Bit Description
A31–16 Read-only versions of bits 31–16 of the scatter-gather DMA current count and

control register.
D15–0 The number of words still to be transferred in the current DMA.

Main DMA Next Count and Control Register

Size 32-bit

I/O read-only

Address 0x0C

Access EDT_DMA_NXT_CNT

Comments The scatter-gather DMA fills this register when required from the scatter-
gather DMA list.

Bit Description
A31–16 Read-only versions of bits 31–16 of the scatter-gather DMA next count and

control register.
D15–0 The number of words still to be transferred in the current DMA.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 64

PCI 16D

Scatter-gather DMA Current Address Register

Size 32-bit

I/O read-only

Address 0x10

Access EDT_SG_CUR_ADDR

Comments Automatically copied from the scatter-gather DMA next address register
when that register is valid and the current scatter-gather DMA completes.

Bit Description
A31–0 The address of the current DMA or the last used address if no DMA is currently

active.

Scatter-gather DMA Next Address Register

Size 32-bit

I/O read-write

Address 0x14

Access EDT_SG_NXT_ADDR

Comments The driver software writes this register as described in step 2 of the list in the
Performing DMA section on page Error! Bookmark not defined..

Bit Description
A31–0 The starting address of the next DMA.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 65

PCI 16D

Scatter-gather DMA Current Count and Control Register

Size 32-bit

I/O read-only

Address 0x18

Access EDT_SG_CUR_CNT

Comments The driver software can read this register for debugging or to monitor DMA
progress.

Bit Description
A31–16 Read-only versions of bits 31–16 of the scatter-gather DMA next count and

control register.
D15–0 The number of words still to be transferred in the current DMA.

Scatter-gather DMA Next Count and Control Register

Size 32-bit

I/O read-write

Address 0x1C

Access EDT_SG_NXT_CNT

Comments The driver software writes this register as described in step 2 of the list in the
Performing DMA section on page 63.

Bit EDT_ Description
D31 EN_RDY Enable scatter-gather next empty interrupt. A value of 1

enables DMA_START (bit 29 of this register) to set
DMA_INT (bit 12 of the Status register), thus causing an
interrupt if the PCI_EN_INTR bit is set (bit 15 of the Main
DMA Command and Configuration register).
A value of 0 disables the DMA_START from causing an
interrupt.

D30 DMA_DONE Read-only: a value of 0 indicates that a scatter-gather DMA
transfer is currently in progress. A value of 1 indicates that
the current scatter-gather DMA is complete.

D29 DMA_START Write a 1 to this bit to indicate that the values of this
register and the SG DMA Next Address register are valid;
this sets this bit to 0, indicating either that the copy is in
progress, or that the device is waiting for the current DMA
to complete. In either case, this register and the SG DMA
Next Address register are not available for writing.
Reading a value of 1 indicates that the SG DMA Next

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 66

PCI 16D

Count and SG DMA Next Address registers have been
copied into the SG DMA Current Count and SG DMA
Current Address registers and that the Next Count and
Next Address registers are once more available for writing.

D28 EN_MN_DONE A value of 1 enables the main DMA page done interrupt (bit
18).

D27 EN_SG_DONE Enable scatter-gather DMA done interrupt. A value of 1
enables DMA_DONE (bit 30 of this register) to set
DMA_INT (bit 12 of the Status register), thus causing an
interrupt if the PCI_EN_INTR bit is set (bit 15 of the Main
DMA Command and Configuration register).
A value of 0 disables the DMA_DONE from causing an
interrupt.

D26 DMA_ABORT A value of 1 stops the DMA transfer in progress and
cancels the next one, clearing bits 29 and 30. Always 0
when read.

D25 DMA_MEM_RD A value of 1 specifies a read operation; 0 specifies write.
D24 BURST_EN A value of 0 means bytes are written to memory as soon as

they are received. A value of 1 means bytes are saved to
write the most efficient number at once.

D23 MN_DMA_DONE Read only: a value of 1 indicates that the main DMA is not
active.

D22 MN_NXT_EMP Read only: a value of 1 indicates that the main DMA next
address and next count registers are empty.

D21–19 Reserved for EDT internal use.
D18 PG_INT Read-only: a value of 1 indicates that the page interrupt is

set (enabled by bit 28 of this register), and that the main
DMA has completed transferring a page for which bit 16
(the page interrupt bit) was set in the scatter-gather DMA
list (see Figure 6). If the PCI interrupt is enabled (bit 15 of
the PCI interrupt and remote Xilinx configuration register),
this bit causes a PCI interrupt.
Clear this bit by disabling the page done interrupt (bit 28 of
this register).

D17 CURPG_INT Read-only: a value of 1 indicates that bit 16, the page
interrupt bit, was set in the scatter-gather DMA list entry for
the current main DMA page.

D16 NXTPG_INT Read-only: a value of 1 indicates that bit 16, the page
interrupt bit, was set in the scatter-gather DMA list entry for
the next main DMA page.

D15–0 The number of bytes in the next scatter-gather DMA list.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 67

PCI 16D

Flash ROM Access Registers

Flash ROM Address Register

Size 32-bit

I/O read-write

Address 0x80

Access EDT_FLASHROM_ADDR

Comment Use this register and the flash ROM data register (below) to update the
program in the field-programmable gate array that implements the PCI
interface.

Bit Description
D31–25 Reserved for EDT internal use.
D24 A value of 1 causes the data in the flash ROM data register to be written to

the address specified by bits 0 through 23. A value of 0 reads the data.
D23-0 Address of location in flash ROM that the next read or write will access.

Flash ROM Data Register

Size 32-bit

I/O read-write

Address 0x84

Access EDT_FLASHROM_DATA

Comment Use this register and the flash ROM address register (above) to update the
program in the field-programmable gate array that implements the PCI
interface.

Bit Description
D31–9 Not used
D8 A read-only bit indicating the position of the jumper that enables access to

the protected area of the ROM that contains the executable program. A
value of 1 indicates that the board can load a new program.

D7-0 The new program to load into flash ROM with a write operation (specified by
setting bit A24 in the flash ROM address register), or the data that was read
(specified by clearing bit A24 in the flash ROM address register).

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 68

PCI 16D

Device Control Registers

Command Register

Size 16-bit

I/O read-write

Address 0xC4

Access P16_COMMAND

Bit P16D_ Description
D15 EN_INT Enable PCI interrupt, to set the interrupt on a board-wide

basis. Write 1 to set the interrupt; write 0 to clear.
D14 Not used.
D13 EN_DINT Enable device interrupt. Write 0 to clear the interrupt.
D12 FCLK Force Clock. Set FCLK to produce the same effect as an

external cycle request (DCLK); it is not necessary to clear
FCLK afterward.

D11-10 Not used.
D9 ODDSTART Set to 1 when DMA starts on an odd-word boundary. In

order for ODDSTART to behave correctly, first clear the
FIFOs with BCLR.

D8 BCLR Board Clear. Set BCLR to abort the DMA in process and
clear the PCI 16D FIFOs, provided DFRST in the
Configuration register has not been set todesable a FIFO
reset. This operation does not send INIT to the device.
This value is not stored and need not be reset.

D7 INIT Initialize device. The PCI 16D asserts the DEVINIT signal
on the interface as long as INIT is set to 1. The
DEVINIT signal is not a pulse; the software determines
the length of DEVINIT according to the requirements of
the device.

D6-4 FNCT3
FNCT2
FNCT1

These function control bits are passed directly to the device
interface. They are true when p ositive; write a 1 to these
bits to see a logic high on the cable. When the loopback
connector is installed, FNCT2 is connected to the device
interrupt input.

D3 Not used.
D2 FLUSH FLUSH is set to 1 when a DMA transfer is aborted and the

register fi8les still contain data awaiting a burst transfer.
FLUSH causes a final 16-byte transfer to the current DMA
buffer. This value is not stored and need not be reset.

D1 DIR Select the direction of the DMA transfer. DIR is set to 1
when the PCI 16D writes DMA data. When the loopback
connector is installed, toggling this bit changes the DEVINT

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 69

PCI 16D

signal.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 70

PCI 16D

D0 Not used.

Configuration Register

Size 16-bit

I/O read-write

Address 0xC6

Access P16_CONFIG

Bit P11W_ Description
D15-11 Not used.
D10 SSWAP When set to 1, Short SWAP swaps 16-bit words within a

32-bit memory word, for hosts that require this reordering.
D9 INV When set to 1, inverts the data.
D8 SWAP SWAP determines which byte of PCI Local Bus half-word

ends up on which half of the PCI 16D 16-bit bus. When
SWAP is 0, byte swapping is disabled; this is the default—
the upper byte of an Sbus half word appears on the upper
half of the PCI 16D 16-bit bus.

D7-4 Not used.
D3 DFRST Set DFRST to disable a FIFO reset. When set to 1, DFRST

prevents BCLR from resetting and emptying the FIFO.
D2 DBMODE Set DBMODE to disable Sbus burst DMA transfers. Use

DBMODE for applications in which data must be
immediately transferred to memory.

D1 CLKP CLKP, the data clock polarity bit, determines which edge of
the DCLK inpu7t initiates the transfer. A 0 on CLKP
requires a negative edge to initiate the transfer; this is the
default. A 1 on CLKP requires a positive DCLK edge to
start a tranfer.
We recommend using the negative edge to initiate
transfers, so that unplugging the device cable does not
produce a clock edge.

D0 DACKP DACKP determines the polarity of the Data Acknowledge
signal. If DACKP is zero, the external DACK is asserted
low (negative is true); this is the default. If DACKP is set,
the external DACK is asserted high (positive is true).
If you remove the hardware jumper on the PCI 16D, the
DACK polarity is forced to positive true, and DACKP is
ignored. Use the jumper for devices that require a positive
value to be true DACK from powerup.
We recommend the negative is true setting for DACK, so
that DACK is not asserted when the cable is unplugged
from the device.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 71

PCI 16D

Status Register

Size 16-bit

I/O read-only

Address 0xC8

Access P16_STATUS

Bit P16D_ Description
D15 INT A value of 1 indicates the PCI interrupt is asserted.
D14 Not used.
D13 DEVINT Shows when a device interrupt is pending. DEVINT is set

to show a pending device interrupt when the external DINT
input is asserted (low) and latched, and the ENDINT bit is
set high in the Configuration register. DEVINT causes a
PCI bus interrupt when EN_INT (bit 15 of the Command
register) is 1, which enables interrupts. Clear DEVINT by
setting EN_DINT (bit 13 of the Command registers) to 0,
and then to 1.

D12 DMA_INT A value of 1 indicates the end of DMA interrupt is asserted.
D11 DINT_S Reflects the state of the external PCI 16D DINT (Device

Interrupt) input. DINT is not latched.
D10-8 STATC_S

STATB_S
STATA_S

Reflects the state of the external PCI 16D inputs STATA,
STATB, and STATC.

D7 DINIT_S Reads back the state of the Command register INIT bit.
D6-4 FNCT3_S

FNCT2_S
FNCT1_S

Reads back the state of Command register bits FNCT3,
FNCT2, and FNCT1.

D3 ENEOD_S End of DMA interrupt enabled; reads back the ones
complement of the ENEOD bits in the Configuration
register.

D2 ENDINT_S Device interrupt enabled; reads back the ones complement
of the ENDINT bits in the Configuration register.

D1 DIR_S Reads back the ones complement of the DIR bit in the
Command register.

D0 Not used.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 72

PCI 16D

Data Register

Size 16-bit

I/O read-write

Address 0xCA

Access P16_DATA

Comments Reading this register yields the current contents of the PCI 16D input data
bus.

Bit Description
D15-0 When DMA is in progress, DMA writes to this register; otherwise, data written

to this register appears on the PCI 16D output data bus to this register.

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 73

PCI 16D

Specifications
PCI Local Bus Compliance
Number of Slots 1
Transfer Size 1, 2, 4, and 16 bytes
DVMA master Yes
PCI Local Bus width 32 bits
Clock rate 16 MHz to 25 MHz
Device Data Transfer
Format 16-bit parallel word
Handshake 2-wire asynchronous handshake
Transfer types Input or output
Signal polarity Data is true.

Control signals are programmable; the default is true when zero.
Signals 16 data inputs, 16 data outputs

3 status inputs, 3 control outputs, 1 device interrupt
Buffers 128-byte FIFO for input, 128-byte FIFO for output

Software Drivers for Solaris 2.6+ (Intel and

SPARC platforms), Windows NT/2000/XP Version 4.0, AIX Version
4.3, IRex 6.5, and Linux Red Hat Version 5.1

Power 5V at 1.5A

Environmental

Temperature Operating: 10 to 40° C
Nonoperating: -20 to 60° C

Humidity Operating: 20 to 80% noncondensing at 40° C
Nonoperating: 95% noncondensing at 40°C

Physical

Dimensions 3.3” x 5.78” x 0.5”
Weight 6 oz

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 74

PCI 16D

References
See the UNIX manual pages for ioctl(2), select(2), read(2), open(2), write(2),
aioread(2), aiowrite(2), and aiowait(2) for specific information about these system
calls.
See the Solaris Installation documents for more information about configuring the kernel for
asynchronous I/O.
PCI Local Bus Specification, Revision 2.1, 1995, is available from:
PCI Special Interest Group
P.O. Box 14070
Portland, OR 97214
Phone:
800/433-5177 (United States)
503/797-4207 (International)
Fax: 503/234-6762

Document Number: 008-00969-00 EDT Public Revision: A February 2004
Template: edt.dot Page 75

	Overview
	After Installing
	Testing
	Building the Sample Programs
	UNIX-based Systems
	Windows Systems

	Uninstalling
	Solaris Systems
	Linux Systems
	Windows Systems

	Upgrading the Firmware

	Real-time Input and Output
	Elements of EDT Interface Applications
	DMA Library Routines
	edt_open
	edt_open_channel
	edt_close
	edt_parse_unit
	edt_read
	edt_write
	edt_start_buffers
	edt_stop_buffers
	edt_check_for_buffers
	edt_done_count
	edt_get_todo
	edt_wait_for_buffers
	edt_wait_for_next_buffer
	edt_wait_buffers_timed
	edt_next_writebuf
	edt_set_buffer
	edt_set_buffer_size
	edt_last_buffer
	edt_last_buffer_timed
	edt_configure_ring_buffers
	edt_buffer_addresses
	edt_disable_ring_buffers
	edt_ring_buffer_overrun
	edt_reset_ring_buffers
	edt_configure_block_buffers
	edt_startdma_action
	edt_enddma_action
	edt_startdma_reg

	Example
	edt_abort_dma
	edt_abort_current_dma
	edt_get_bytecount
	edt_timeouts
	edt_get_timeout_count
	edt_set_timeout_action
	edt_get_timeout_goodbits
	edt_do_timeout
	edt_get_rtimeout
	edt_set_rtimeout
	edt_get_wtimeout
	edt_set_wtimeout
	edt_get_timestamp
	edt_get_reftime
	edt_ref_tmstamp
	edt_get_burst_enable
	edt_set_burst_enable
	edt_get_firstflush
	edt_set_firstflush
	edt_flush_fifo
	edt_get_goodbits
	edt_set_event_func
	edt_remove_event_func
	edt_reg_read
	edt_reg_write
	edt_reg_and
	edt_reg_or
	edt_get_foicount
	edt_set_foicount
	edt_intfc_write
	edt_intfc_read
	edt_intfc_write_short
	edt_intfc_read_short
	edt_intfc_write_32
	edt_intfc_read_32
	edt_msleep
	edt_alloc
	edt_free
	edt_perror
	edt_errno
	edt_access
	edt_get_bitpath

	EDT Message Handler Library
	Message Definitions
	User application messages
	Edtlib messages
	Pdvlib messages
	Library and application messages

	Files
	edt_msg_init
	edt_msg
	edt_msg_output
	edt_msg_close
	edt_msg_set_level
	edt_msg_set_function
	edt_msg_set_msg_file
	edt_msg_perror
	p16d_set_command
	p16d_get_command
	p16d_set_config
	p16d_get_config
	p16d_get_stat

	Hardware
	PCI Local Bus Interface
	FIFO
	Device Interface
	Logic Levels

	Signals
	Handshake Signals
	Data Signals
	Synchronous Control Signals
	Asynchronous Control Signals
	Timing
	Using the Signal for Data I/O

	Registers
	Configuration Space
	PCI Local Bus Addresses
	Scatter-gather DMA
	Performing DMA
	Main DMA Current Address Register
	Main DMA Next Address Register
	Main DMA Current Count and Control Register
	Main DMA Next Count and Control Register
	Scatter-gather DMA Current Address Register
	Scatter-gather DMA Next Address Register
	Scatter-gather DMA Current Count and Control Register
	Scatter-gather DMA Next Count and Control Register

	Flash ROM Access Registers
	Flash ROM Address Register
	Flash ROM Data Register

	Device Control Registers
	Command Register
	Configuration Register
	Status Register
	Data Register

	Specifications
	References

