
PCI53B
PCI Bus to MIL-STD 1553B Interface

USER’S GUIDE

008-00967-02

PCI53B User’s Guide
The information in this document is subject to change without notice and does not represent a commitment
on the part of Engineering Design Team, Inc. The software described in this document is furnished under
a license agreement or nondisclosure agreement. The software may be used or copied only in accordance
with the terms of the agreement.

Engineering Design Team, Inc. (“EDT”), makes no warranties, express or implied, including without
limitation the implied warranties of merchantibility and fitness for a particular purpose, regarding the
software described in this document (“the software”). EDT does not warrant, guarantee, or make any
representations regarding the use or the results of the use of the software in terms of its correctness,
accuracy, reliability, currentness, or otherwise. The entire risk as to the results and performance of the
software is assumed by you. The exclusion of implied warranties is not permitted by some jurisdictions.
The above exclusion may not apply to you.

In no event will EDT, its directors, officers, employees, or agents be liable to you for any consequential,
incidental, or indirect damages (including damages for loss of business profits, business interruption, loss
of business information, and the like) arising out of the use or inability to use the software even if EDT has
been advised of the possibility of such damages. Because some jurisdictions do not allow the exclusion or
limitation of liability for consequential or incidental damages, the above limitations may not apply to you.
EDT’s liability to you for actual damages for any cause whatsoever, and regardless of the form of the action
(whether in contract, tort [including negligence], product liability or otherwise), will be limited to $50.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, without the express written agreement of Engineering Design Team, Inc.

 Copyright Engineering Design Team, Inc. 1997–2001. All rights reserved.

Sun, SunOS, SBus, SPARC, and SPARCstation are trademarks of Sun Microsystems, Incorporated.

Windows NT is a registered trademark of Microsoft Corporation.

Intel and Pentium are registered trademarks of Intel Corporation.

UNIX is a registered trademark of X/Open Company, Ltd.

OPEN LOOK is a registered trademark of UNIX System Laboratories, Inc.

Red Hat is a trademark of Red Hat Software, Inc.

IRex is a trademark of Silicon Graphics, Inc.

AIX is a registered trademark of International Business Machines Corporation.

Xilinx is a registered trademark of Xilinx, Inc.

Kodak is a trademark of Eastman Kodak Company.

The software described in this manual is based in part on the work of the independent JPEG Group.

EDT and Engineering Design Team are trademarks of Engineering Design Team, Inc.
ii EDT, Inc. June 2001

PCI53B User’s Guide
Contents

Overview ...1

After Installing..2
Configuring the PCI53B...2
Verifying the Installation...2
Building the Sample Programs...3

Solaris or Linux Systems ..3
Windows NT Systems ..3

Uninstalling ...3
Solaris or Linux Systems ..3
Windows NT Systems ..3

Obtaining Software Updates...4
Upgrading the Firmware...4

Checking the Firmware Level ...4
Applying an Update ...4

About the MIL-STD 1553 Bus...5
Bus Elements ...5
Message Types ..5
Command Word ...8
Status Word ...9
Mode Codes...10

Connecting to a 1553 Bus ..11
Connectors ...11
External Bus Coupling ...11

Writing Applications ...15
PCI53B Library Routines ...15

p53b_open ..16
p53b_rtopen_notactive ...17
p53b_close ..17
p53b_rtactive..18
p53b_read ...18
p53b_write..19
p53b_ioctl ...19
p53b_perror..20
p53b_msleep ..20

Example Applications ..21
p53btest...21
bctest ...21
rttest ..22
bm..23
setdebug ...24
xmt1553...24
rcv1553..24
testdriver ..25
mem_pci53bi ..25

Opening The PCI53B Driver ...26
EDT, Inc. June 2001 iii

PCI53B User’s Guide
Reading and Writing Data To and From the PCI53B..26
In Bus Controller Mode..26
In Remote Terminal Mode...26
In Bus Monitor Mode ...27
Read and Write Data Structures ...28
Using the Data Structures as a Bus Controller ...28
Using the Data Structures as a Remote Terminal...30
Sending Mode Codes..31
Receiving Mode Codes...31
Specifying Error Insertion and Intermessage Gap for System Tests ...32
Scheduling bc_auto Structures...36

Connector Pinout ...38

Registers...39
Configuration Space...39
PCI Local Bus Addresses ...40

Host File ...40
SPARC File ...41
Host Interrupt Register ..41
SPARC Interrupt Register..42

Specifications ..43

Glossary ...44

References..46

Appendix A ioctl() Parameters ..47
iv EDT, Inc. June, 2001

PCI53B User’s Guide

EDT, Inc. June 2001 v

Tables

Mode Codes ..10
Data Bus and Coupling Requirements ..14
PCI53B Library Routines..15
Mode Code Responses ..32
Error Codes ...33
Connector Pinout...38
Configuration Space Status Field Values..39
Configuration Space Command Field Values...40
PCI Bus to MIL-STD 1553B Interface Specifications ...43

PCI53B User’s Guide

vi EDT, Inc. June 2001

Figures

Direct Coupling ...12
Transformer Coupling...13
Configuration Space Addresses ..39
PCI Local Bus Addresses..40

PCI53B User’s Guide Overview
Overview

MIL-STD-1553B is a 1 Mb per second serial bus interface used where reliability in extreme environments is
essential, such as aircraft or satellites. It is typically used to configure a variety of sensors or subsystems and
to report their status to a central controller.

The PCI53B PCI Bus to MIL-STD 1553B Interface allows you to connect a Sun workstation or Windows
NT/2000 computer to a 1553B bus, or to use your host computer to emulate an entire 1553B bus system of
32 devices or fewer, including a bus controller, a bus monitor, and up to 31 remote terminals. The PCI53B
has two channels for redundancy, an embedded SPARC microprocessor and 4 MB of onboard memory, and
hardware support for timestamps of 1553B bus events. It includes a PCI Bus DMA master to transfer data
between onboard memory and the host processor’s main memory, under the control of the embedded
SPARC microprocessor. It supports the full 1553B set of standard commands and subcommands.

NOTE Engineering Design Team can customize a PCI53B to detect any standard command or subcommand as
illegal if your application requires it.

The PCI53B includes a loadable, configurable device driver and a wide variety of example applications that
can be customized for many different purposes.

This document describes how to install the PCI53B bus interface, and write applications for it. It is divided
into the following sections:

Installation provides instructions about manually checking and reconfiguring
software installation.

After Installing gives instructions for verifying the installation, configuring the
PCI53B, building the sample programs, uninstalling the software,
and upgrading the firmware when necessary.

About the MIL-STD-1553 Bus provides an overview of the 1553B bus functionality.

Connecting to a 1553 Bus describes the connectors and coupling required for various
configurations.

Writing Applications explains how the example programs provided can get you started
programming for the PCI53B driver.

Connector Pinout provides a pinout diagram describing the connection from the
PCI53B board to the interface (bus) cable.

Registers describes the PCI53B hardware registers.

Specifications lists the specifications.

Glossary defines the terms and acronyms used in this document.

References refers to other documents that may prove useful to you when
writing applications for the PCI53B.

ioctl Parameters This appendix describes parameters to the p53b_ioctl library
call that applications can use to perform I/O, other than reading or
writing.
EDT, Inc. June 2001 1

Installation PCI53B User’s Guide
Installation

Refer to the separate document, Installation Instructions, for specific instructions on how to install the
PCI53B hardware and software.

During software installation, the install program will check to see whether the current configuration of the
PCI 53B is compatible with the system architecture. PCI53B boards are configured at the factory to run on
either Sun Sparc or Intel X/86 system architecture, and if there is a conflict, you will be instructed to
reconfigure the board.

You can also do the check and the reconfiguration manually after the software installation. To check the
board's compatibility with the host architecture, go to /opt/EDTpdv (Unix/Linux), or bring up the P53b
utilities command shell (Windows NT/2000), and run:

pdb checkver

To update the firmware for an X/86 host, run:

pdb update86

To update the firmware for a Sun host, run:

pdb updatesun

After running the update, you must shut down the system and cycle power in order for the changes to take
effect.

After Installing
After you’ve installed the PCI53B board and software, follow the instructions below to verify the
installation. Then configure the board as a 1553A device, if necessary (the default is a 1553B), and build the
sample programs.

Configuring the PCI53B
You can configure the PCI Bus to MIL-STD 1553B Interface to perform as a general-purpose 1553B interface
with or without the broadcast address, or as a 1553A interface. The 1553B standard normally reserves bus
address 31 to indicate a broadcast transaction, leaving addresses 0-30 as remote terminal (RT) addresses.
The no-broadcast option does not reserve address 31 (all 32 bus addresses are available for remote
terminals) but sacrifices the ability to broadcast to all RTs at once.

The default is a general-purpose 1553B interface with broadcast enabled. If this is acceptable, you need not
configure the device.

To configure the device:

1. If you’re on a Windows NT/2000 platform, run P53b Utilities.

2. At the DOS prompt (Windows NT/2000) or the shell prompt (Solaris or Linux), enter the command:

embselect
2 EDT, Inc. June 2001

PCI53B User’s Guide Installation
3. Enter 1 for the firmware for the general-purpose 1553B interface; 2 for the 1553A; or 3 for the no-broad-
cast option.

Other selections may be added for custom firmware options.

Verifying the Installation
To verify that installation was successful and that the PCI53B is operating correctly, run the p53btest board
test as follows.

For Windows NT/2000:

1. Double-click on the P53b Utilities shortcut to open the PCI53B utility window.

2. Run the test:

p53btest -l 1

For Solaris or Linux:

1. Open a command-line window and cd to /opt/EDTp53b.

2. Run the test:

./p53btest -l 1

The -l 1 option specifies the number of loops of the test to run; here we specify 1 iteration.

Building the Sample Programs

Solaris or Linux Systems
To build any of the example programs on Solaris or Linux systems, enter the command:

make file

where file is the name of the example program you wish to install.

To build and install all the example programs, enter the command:

make

All example programs display a message that explains their usage when you enter their names without
parameters.
EDT, Inc. June 2001 3

Installation PCI53B User’s Guide
Windows NT/2000 Systems
To build any of the example programs on Windows NT/2000 systems:

1. Double-click the P53b Utilities icon to open the utility window.

2. Enter the command:

make file

where file is the name of the example program you wish to build.

To build and install all the example programs, simply enter the command:

make

All example programs display a message that explains their usage when you enter their names without
parameters.

You can also build the sample programs by setting up your own projects in Windows Visual C++.

Uninstalling

Solaris or Linux Systems
To remove the PCI53B driver on Solaris or Linux systems:

1. Become root or superuser.

2. Enter:

pkgrm EDTp53b

For further details, consult your Solaris or Linux documentation, or call Engineering Design Team.

Windows NT/2000 Systems
To remove the PCI53B toolkit on Windows NT/2000 systems, use the Windows NT/2000 Add/Remove
utility. For further details, consult your Windows NT/2000 documentation.

Obtaining Software Updates
You can always get the most recent update of the software from our web site, http://www.edt.com. See the
document titled Contact Us.

Upgrading the Firmware
After upgrading to a new device driver, it may sometimes also be necessary to upgrade the PCI interface
PROM. If so, the readme file will say so.

To use the following commands, first get a command-line prompt in the EDT directory:

• If you’re using Windows NT/2000, double-click on the P53B Utilities shortcut.

• If you’re using Solaris or Linux, cd to /opt/EDTp53b.
4 EDT, Inc. June 2001

https://www.edt.com

PCI53B User’s Guide Installation
Checking the Firmware Level
To check the firmware level, use the pdb utility:

1. At the command-line prompt, enter:

pdb

2. At the “:” prompt, enter:

fv

You should see the following. If not, contact EDT for a firmware update.

Checking xilinx rev

Version 3 pci xilinx

sector 6: p03z.lca b 4013EPQ240 c 99/03/09 d 16:40:03 e

sector 7: p03z.lca b 4013EPQ240 c 99/03/09 d 16:40:03 e

3. To exit from pdb, enter

q

Applying an Update
To update the firmware use enter:

pdb updateall
EDT, Inc. June 2001 5

About the MIL-STD 1553 Bus PCI53B User’s Guide
About the MIL-STD 1553 Bus

The MIL-STD 1553 bus, revision B, is a differential serial bus interface used in military equipment. The 1
Mb-per-second bus usually has redundant channels. It has been used in research and development, as well
as production systems, to integrate target, weapons and system status. For the complete specification and
implementation handbook, see the section entitled References.

Bus Elements
Each 1553 bus comprises the following elements:

• a bus controller (BC),

• one or more remote terminals (RT)

• the bus itself (cable, couplers and connectors), and

• a bus monitor (BM), which is optional.

A bus can have only one active bus controller at a time. The BC explicitly manages all data transfers on the
bus using a command/response protocol. Bus controller responsibility can be transferred from unit to unit
using mode codes—a capability referred to as dynamic bus control—although some systems explicitly
disallow this. The BC initiates a transfer by sending a command word followed by data, if required. The
selected RT responds with status and data, if required.

Each remote terminal on the bus has a unique address. The bus controller selects a remote terminal using
five bits of the command word. Of the 32 RT addresses, address 31 is normally reserved for broadcasting
a transmission to all RTs. Consequently, no more than 31 RTs are allowed on a 1553 bus, unless the bus is
configured in “no-broadcast” mode. Within the command word, five more bits are reserved for selecting
one of 32 subaddresses. Two subaddresses (0 and 31) are reserved to flag a mode code transmission under
the 1553B specification, only one subaddress (0) is reserved under the 1553A specification. Each of the
remaining subaddresses can contain up to thirty-two 16-bit data words. A remote terminal needs to
implement only the subaddresses and data words required for its function.

The bus itself is a (redundant) pair of controlled-impedance differential cables. These cables are terminated
at both ends with resistors valued at the characteristic impedance. The remote terminals and bus controller
are connected to the bus using either a direct connection or a transformer-coupled connection. The cable
for the direct connection, if allowed, must not be longer than one foot. For longer distances, a transformer
coupling must be used, and in most applications a transformer connection is required to enhance bus
reliability.

A bus monitor can be used to monitor all bus traffic. This information can be used for development or
diagnostics.

The PCI53B can be configured to operate as any or all of the 31 possible remote terminals (or 32 in no-
broadcast mode), the bus controller, and a bus monitor, all independently and concurrently.

Message Types
The 1553 bus uses ten message types, whose format is shown below. Each box represents 20 µs on the bus:
3 µs for synchronization and word identification (whether the word represents data or a command), 16 µs
6 EDT, Inc. June 2001

PCI53B User’s Guide About the MIL-STD 1553 Bus
to transmit the command or data, and 1 µs for parity. Response time is 4–12 µs, and intermessage time is
any amount of time longer than 4 µs.
EDT, Inc. June 2001 7

About the MIL-STD 1553 Bus PCI53B User’s Guide
BC to RT Transfer

RT to BC Transfer

RT to RT Transfer

BC to All RTs Broadcast

RT to All Other RTs Broadcast

Mode Command—No Data Word

BC RT BC

Receive
Command

Data
Word 0

.... Data
Word n

Response
Time

Status
Word

Intermsg
Gap

Next
Command

BC RT BC

Transmit
Command

Response
Time

Status
Word

Data
Word 0vt

Data
Word n

Intermsg
Gap

Next
Command

BC to
receiving
RT

BC to
xmitting
RT

Xmitting
RT . . .

Receive
Command

Transmit
Command

Response
Time

TX Status
Word

Data
Word 0

Data
Word n

Response
Time

. . .
Receiving
RT BC

RX Status
Word

Intermsg
Gap

Next
Command

BC BC

Receive
Command

Data
Word 0

Data
Word n

Intermsg
Gap

Next
Command

BC to all
other RTs

BC to
xmitting
RT

Xmitting
RT

Receive
Command

Transmit
Command

Response
Time

TX Status
Word

Data
Word 0

Data
Word n

BC RT BC

Mode
Command

Response
Time

Status
Word

Intermsg
Gap

Next
Command
8 EDT, Inc. June 2001

PCI53B User’s Guide About the MIL-STD 1553 Bus
Mode Command—Data Word RT Transmit

Mode Command—Data Word RT Receive

Broadcast Mode Command—No Data Word

Broadcast Mode Command—Data Word RT Receive

Command Word
The command word contains 16 active bits, three sync bits and a parity bit. The sync bits tag the word as a
command word. The bits are defined below in the reverse order transmitted.

RTADD[4-0] Remote Terminal Address. A value of 11111 (31) indicates a broadcast command

T/R Transmit/Receive bit. A value of 0 indicates addressed RT must receive.

SADD[4-0] Subaddress/Mode. Values 00001 through 11110 indicate which subaddress of the
addressed RT must transmit or receive. 00000 or 11111 indicate that the command is a
mode command and the WCNT field is the mode code.

WCNT[4-0] Word Count/ Mode Code. For subaddresses 00001 through 11110, WCNT indicates the
word count—that is, the data transfer size. Values of 1 through 31 indicate 1 word through
31 words, respectively. A value of 0 indicates 32 words.

When the subaddress field is 0 or 31, the WCNT bits specify the mode code.

BC RT BC

Mode
Command

Response
Time

Status
Word

Data
Word

Intermsg
Gap

Next
Command

BC RT BC

Mode
Command

Data
Word

Response
Time

Status
Word

Intermsg
Gap

Next
Command

BC BC

Mode
Command

Intermsg
Gap

Next
Command

BC BC

Mode
Command

Data
Word

Intermsg
Gap

Next
Command

D15 D14 D13 D12 D11 D10 D9 D8

RTADD4 RTADD3 RTADD2 RTADD1 RTADD0 T/R SADD4 SADD3

D7 D6 D5 D4 D3 D2 D1 D0

SADD2 SADD1 SADD0 WCNT4R WCNT3R WCNT2R WCNT1R WCNT0R
EDT, Inc. June 2001 9

About the MIL-STD 1553 Bus PCI53B User’s Guide
Status Word
The status word contains 16 active bits, three sync bits and a parity bit. The sync bits tag the word as a status
word. The bits are defined below in the reverse order transmitted.

RTADD[4-0] Remote Terminal Address indicates address of RT returning status.

MERR Message Error. Set to a one if the preceding command or data words fail validity tests.

INSTR Instrumentation Bit.

Some systems use this bit to distinguish a command word from a status word
unambiguously. In such systems, the corresponding bit in the command word would
always be set to zero, restricting such a system to 15 subaddresses per RT. The PCI53B does
not support this feature.

SRQ Service Request. When set to one, indicates the RT requires application-dependent service.

RSV[2-0] Reserved. Set to zero.

BCRCD Broadcast Command Received. Set to one when the previous command was a broadcast
command.

BUSY Busy Bit. Set to one when RT cannot move the data requested by the BC.

SFLAG Subsystem Flag. Set to one when the RT has detected an internal fault.

DBACP Dynamic Bus Control Acceptance. Set to one if the RT has received a Dynamic Bus Control
mode code and is prepared to assume BC responsibilities.

TF Terminal Flag. Set to one to indicate a fault in the RT.

D15 D14 D13 D12 D11 D10 D9 D8

RTADD4 RTADD3 RTADD2 RTADD1 RTADD0 MERR INSTR SRQ

D7 D6 D5 D4 D3 D2 D1 D0

RSV2 RSV1 RSV0 BCRCD BUSY SFLAG DBACP TF
10 EDT, Inc. June 2001

PCI53B User’s Guide About the MIL-STD 1553 Bus
Mode Codes
Mode codes allow the BC to control the mode and operation of the bus and obtain diagnostic information.

Mode
Code Function T/R

Data
Word

Broadcast
Allowed

PCI53B Response
(see page 35 for details)

00000 Dynamic Bus Control 1 None No Possible interrupt

00001 Synchronize 1 None Yes Possible interrupt

00010 Transmit Status Word 1 None No Transmit contents of status
register

00011 Initiate Self Test 1 None Yes None: wrap-around test
executed for every
message

00100 Transmitter Shutdown 1 None Yes Possible interrupt

00101 Override Transmitter
Shutdown

1 None Yes Possible interrupt

00110 Inhibit Terminal Flag (TF) Bit 1 None Yes Possible interrupt

00111 Override Inhibit TF Bit 1 None Yes Possible interrupt

01000 Reset Remote Terminal 1 None Yes Possible interrupt

01001–
01111 Reserved

10000 Transmit Vector Word 1 1 No Transmit contents of
vector word register

10001 Synchronize with Data Word 0 1 Yes Returns data word

10010 Transmit Last Command 1 1 No Transmit contents of
command/status word
register

10011 Transmit Built-in Test Word 1 1 No Transmit contents of built-
in test error register

10100 Selected Transmitter
Shutdown

0 1 Yes Possible interrupt

10101 Override Selected Transmitter
Shutdown

0 1 Yes Possible interrupt

10110–
11111 Reserved

Table 1. Mode Codes
EDT, Inc. June 2001 11

Connecting to a 1553 Bus PCI53B User’s Guide
Connecting to a 1553 Bus

The MIL-STD 1553 specification (see References, page 50) covers the physical design of the bus in detail.
This document discusses a typical bus, a 78-Ω twinaxial cable—a 100% shielded cable with two signal
wires—terminated at both ends with 78-Ω resistors. At each tap point for a subsystem, a transformer and
another twinaxial cable—the stub—is connected to the subsystem.

Resistance can vary between 70–85 Ω, but the resistors terminating both ends must match the resistance of
the cable.

The transformer is chosen so that the subsystem presents very little load on the bus at the frequency of bus
operation.

Connectors
The primary and secondary bus connectors are three-lug concentric triaxial type, part number Trompeter
BJ76. A good source for small quantities of mating connectors is Trompeter Electronics of Westlake Village,
CA, (818) 707-2020, http://www.trompeter.com. The exact mating part number depends on your cable.
Typical cable assemblies are Trompeter PTWY series.

To determine the connector required to connect the stub to the bus, consult your system configuration.

If you are using the PCI53B to emulate an entire 1553 system, including the bus controller, remote terminals,
and bus monitors, place a 35–43 Ω termination resistor on both outputs. For example, a 40 Ω resistor is
available from Trompeter Electronics. The part number is TNG-1-1-40. Other suitable parts can be found
in the TNG-1-1-n series, where n is the resistance.

If you wish merely to connect the PCI53B to one other 1553 device, use two Trompeter TNG-2-n resistors,
where n is the resistance. Make sure that the resistance of the terminations matches the resistance of the
cable. For example, use Trompeter part number is TNG-2-78 and a 78 Ω cable.

External Bus Coupling
A good source of couplers and terminators is Technitrol of Philadelphia, PA, (215) 426-9105,
http://www.technitrol.com.

Have the software select a direct-coupled connection if the length of the stub (the length from the wire to
the board) is one foot or less. Direct-coupled connections can be smaller, lighter, cheaper, and perhaps
simpler than transformer-coupled connections, although this is not always the case. However, they are
significantly less robust, as a short circuit in the cable or device can cause the bus to fail. For this reason,
most applications require transformer coupling.

Use the supplied setdebug utility to change between a direct-coupled connection and a transformer-
coupled connection. On Windows, double-click the P53b Utilities icon to open the command window.

setdebug -C direct

where direct is 1 for direct-coupled or 0 for transformer-coupled.
12 EDT, Inc. June 2001

http://www.trompeter.com/
http://www.technitrol.com/

PCI53B User’s Guide Connecting to a 1553 Bus
Direct coupling is shown in the figure below.

Figure 1. Direct Coupling

z0 z0

data bus
wire pair

Z = characteristic
impedance of the
cable

0

bus shield

shielding

stub of
specified

length

PCI53B

isolation
transformer

transmitter/receiver

terminal

54.9 54.9

A

EDT, Inc. June 2001 13

Connecting to a 1553 Bus PCI53B User’s Guide
A transformer-coupled connection increases the possible length of the stub to 20 feet, as well as increasing
robustness by protecting the bus from short circuits in the device or cable.

Transformer coupling is shown in the figure below.

Figure 2. Transformer Coupling

z0 z0

data bus
wire pair

Z = characteristic
impedance of the
cable

0

bus shield

coupling
transformer

stub of
specified

length

PCI53B
isolation
transformer

transmitter/receiver

terminal

R R

isolation
resistors

R = 0.75 Z _ 2%
0
+

14 EDT, Inc. June 2001

PCI53B User’s Guide Connecting to a 1553 Bus
The table below summarizes the physical requirements of the data bus and coupling.

Parameter MIL-STD-1553B Requirement

Transmission line

cable type twisted-shielded pair

capacitance (wire-to-wire) 30 pF/ft, maximum

twist 4/ft (0.33 in), minimum

characteristic impedance (Z0) 70 to 85 Ω at 1.0 MHz

attenuation 1.5 dB/100 ft at 1.0 MHz, maximum

length of main bus unspecified

termination both ends terminated in resistors = Z0 (±2%)

shielding 75% coverage, minimum

Cable Coupling

stub definition short stub ≤ 1 ft
long stub > 1 to 20 ft (may be exceeded)

coupler requirement short stub direct-coupled
long stub transformer-coupled

coupler transformer:

turns ratio 1 to 1.41

input impedance 3000 Ω minimum (75.0 KHz to 1.0 MHz)

droop 20% maximum (250 KHz)

overshoot and ringing ±1 V peak (250 KHz square wave with 100 ns
maximum rise and fall time)

common mode rejection 45.0 dB at 1.0 MHz

fault protection Resistor in series with each connection equal to
(0.75 Z0) ±2% Ω

Table 2. Data Bus and Coupling Requirements
EDT, Inc. June 2001 15

Writing Applications PCI53B User’s Guide
Writing Applications

The PCI53B includes a library of routines to use in your applications, and various example applications.
These are described below.

A basic PCI53B application has the following elements:

• a #include "edtinc.h" statement

• a p53b_open() library call with the unit number and bus element; for example:

p53b_open(0, RT_7)

Bus elements can be one of BUS_CONTROLLER, BUS_MONITOR, or RT_0–RT_30.

NOTE If you’ve configured the PCI53B to run in no-broadcast mode, as described in “Building the Sample
Programs” on page 3, RT31 is also a legal bus element.

• p53b_read() and p53b_write() library calls to transfer data between bus elements.

• p53b_ioctl() library call to configure, query, or control the device.

On Solaris or Linux platforms, p53b_ioctl() makes ioctl system calls. On Windows NT/2000
platforms, it performs comparable functions.

• a p53b_close() library call to close the device during execution, if necessary. The device is automat-
ically closed when the program exits.
16 EDT, Inc. June 2001

PCI53B User’s Guide Writing Applications
PCI53B Library Routines
The following library routines are included with the PCI53B software.

p53b_open
Description

Opens the specified PCI53B bus element device, and sets up the device handle.

Syntax

#include "edtinc.h"

EdtDev p53b_open(int unit, int BUS_EL);

Arguments

unit specifies the device unit number

BUS_EL The bus element to open. One of:
BUS_CONTROLLER
BUS_MONITOR
RT_0–RT_30

NOTE If you’ve configured the PCI53B to run as a 1553A (in no-broadcast mode), as described in “Building the
Sample Programs” on page 3, RT_31 is also a legal bus element.

Return

A handle of type (EdtDev *), or NULL if error. (The structure definition for (EdtDev *) is included in
edtinc.h.) If an error occurs, call p53b_perror() for the system error message. The device name for the
PCI53B is “p53b”. Once opened, use the device handle to perform I/O using p53b_read(),
p53b_write(), p53b_ioctl(), and other input-output library calls.

Routine Description

p53b_open Opens the PCI53B for application access.

p53b_rtopen_notactive Opens a PCI53B RT for application access with the RT initially disabled.

p53b_close Terminates access to the PCI53B and releases resources.

p53b_rtactive Enables or disables a PCI53B RT.

p53b_read Single, application-level buffer read from the PCI53B for BC and RTs.

p53_bm_read Special read for BM.

p53b_write Single, application-level buffer write to the PCI53B.

p53b_ioctl Performs an ioctl operation on the PCI53B.

p53b_perror Returns a system message in case of error.

p53b_msleep Suspends execution of the application for the specified number of
milliseconds.

P53G_RT_WAIT Suspends program activity until an RT gets a send or receive command
on a specific subaddress.

Table 3. PCI53B Library Routines
EDT, Inc. June 2001 17

Writing Applications PCI53B User’s Guide
p53b_rtopen_notactive
Description

Opens the specified PCI53B remote terminal device initially disabled, and sets up the device handle. To
enable the RT after configuring it, use p53b_rtactive().

Syntax

#include "edtinc.h"

EdtDev p53b_open(int unit, int BUS_EL);

Arguments

unit specifies the device unit number

BUS_EL The bus element to open. One of:

RT_0–RT_30

NOTE If you’ve configured the PCI53B to run as a 1553A (in no-broadcast mode), as described in “Building the
Sample Programs” on page 3, RT_31 is also a legal bus element.

Return

A handle of type (EdtDev *), or NULL if error. (The structure definition for (EdtDev *) is included in
edtinc.h.) If an error occurs, call p53b_perror() for the system error message. The device name for the
PCI53B is “p53b”. Once opened, use the device handle to perform I/O using p53b_read(),
p53b_write(), p53b_ioctl(), p53b_rtactive(), and other input-output library calls.

p53b_close
Description

Shuts down all pending I/O operations, closes the device and frees all driver resources.

Syntax

#include "edtinc.h"

int p53b_close(EdtDev *p53b_p);

Arguments

p53b_p PCI53B device handle returned from edt_open.

Return

0 on success; –1 on error. If an error occurs, call p53b_perror() to get the system error message.
18 EDT, Inc. June 2001

PCI53B User’s Guide Writing Applications
p53b_rtactive
Description

Activates (enables) or deactivates (disables) an RT. This routine is useful to activate an RT after calling
p53b_rtopen_notactive() to open the RT without activating it initially.

Syntax

#include "edtinc.h"

int p53b_rtactive(EdtDev *p53b_p, int active);

Arguments

p53b_p PCI53B device handle returned from edt_open or p53b_rtopen_notactive.

active 1 = activate the device; 0 = deactivate it.

Return

0 on success; –1 on error. If an error occurs, call p53b_perror() to get the system error message.

p53b_read
Description

Performs a read on the PCI53B. For those on UNIX systems, the UNIX 2 GB file offset bug is avoided during
large amounts of input or output, that is, reading past 231 bytes does not fail. This call is not multibuffering,
and no transfer is active when it completes.

Syntax

#include "edtinc.h"

int p53b_read(EdtDev *p53b_p, void *buf, int size);

Arguments

p53b_p PCI53B device handle returned from p53b_open

buf address of buffer to read into

size size of read in bytes

Return

If successful, it always returns the size in bytes that was passed in; –1 is returned in case of error. Call
edt_perror() to get the system error message.
EDT, Inc. June 2001 19

Writing Applications PCI53B User’s Guide
p53b_bm_read
Description

Performs a read on the bus monitor. Always use this option if you use a bus monitor. p53b_read uses a
constant size when returning information; p53b_bm_read uses varying sizes when returning information,
and only returns what is available from the bus monitor.

Syntax

#include "edtinc.h"

int p53b_bm_read(EdtDev *p53b_p, void *buf, int size);

Arguments

p53b_p PCI53B device handle returned from p53b_open

buf address of buffer to read into

size size of read in bytes

Return

The number of bytes available from the Bus Monitor*; –1 is returned in case of error. Call edt_perror()
to get the system error message.

* The Bus Monitor fills the buffer with q_elem structures. The return value is the number of q_elem
structures multiplied by the number of bytes per q_elem structure.

p53b_write
Description

Perform a write on the PCI53B. For those on UNIX systems, the UNIX 2 GB file offset bug is avoided during
large amounts of input or output; that is, writing past 231 does not fail. This call is not multibuffering, and
no transfer is active when it completes.

Syntax

#include "edtinc.h"

int p53b_write(EdtDev *p53b_p, void *buf, int size);

Arguments

p53b_p PCI53B device handle returned from p53b_open

buf address of buffer to write from

size size of write in bytes

Return

The number of bytes successfully transferred; –1 is returned in case of error. Call edt_perror() to get the
system error message.
20 EDT, Inc. June 2001

PCI53B User’s Guide Writing Applications
p53b_ioctl
Description

Performs the specified input-output control operation on the open device.

Syntax

#include "edtinc.h"

int p53b_write(EdtDev *p53b_p, int ioctl_cmd, void* arg);

Arguments

p53b_p PCI53B device handle returned from p53b_open

ioctl_cmd a #define from p53b.h

arg a command-dependent argument

Return

0 on success; –1 on error. If an error occurs, call p53b_perror() to get the system error message.

p53b_perror
Description

Formats and prints a system error.

Syntax

#include "edtinc.h"

void
p53b_perror(char *errstr)

Arguments

errstr Error string to include in the printed error output.

Return

No return value.

p53b_msleep
Description

Suspends execution of the application for the specified number of milliseconds.

Syntax

#include "edtinc.h"

void
p53b_msleep(int msecs)

Arguments

msecs The number of milliseconds to suspend execution of the application.

Return

No return value.
EDT, Inc. June 2001 21

Writing Applications PCI53B User’s Guide
P53G_RT_WAIT
Description

Suspends program activity until a remote terminal gets a send or receive command on a specific
subaddress. The P53G_RT_WAIT command accepts a pointer to a ‘struct rt_wait.’ This structure contains
three receive and three transmit masks to indicate which subaddresses you want to target. Masks are
declared as unsigned 32-bit integers.

Syntax

u_int rcvmask; /* subaddresses to target */

u_int xmtmask;

u_int rcvwait; /* subaddresses you want to wait for to complete as a group */

u_int xmtwait;

u_int actualrcv; /* what occurred; populated by the P53B driver */

u_int actualxmt;

Bits in these masks are arranged so that the least significant bit corresponds to subadddress 0, and the most
significant bit corresponds to subaddress 31. If you want to target a subaddress 23, for example, set the bit
in the rcvmask as follows:

struct rt_wait rtw = {0, 0, 0, 0, 0, 0};

int sa = 23;

rtw.rcvmask|=(1<<(sa - 1));

Or turn off the bit:

rtw.rcvmask &= ~(1<<(sa - 1));

Set the bits in rcvmask and xmtmask for the subaddresses you want to target. P53G_RT_WAIT will block
until one of these subaddresses gets a receive (rcvmask) or transmit (smtmask) command from the bus
controller.

If you want to wait for a group of subaddresses to change, set the bits in rcvwait and xmtwait.
P53G_RT_WAIT will blcok until all these subaddresses get transmit or receive commands.

When P53G_RT_WAIT returns, actualrcv and actualxmt will contain bits set to those subaddresses that
have changed. The following can be called to update the rt_buf structures or send new data to be
transmitted:

p53b_ioctl(p53b_p, P53G_RT_RCVUPDT, &rt_buf);

p53b_ioctl(p53b_p, P53G_RT_XMTUPDT, &rt_buf);

As a special case, rcvmask and xmtmask can be set to zero and P53G_RT_WAIT can be called to check
actualrcv and actualxmt for changes without waiting.

See rttest.c for example usage.

Return

The return value from p53b_ioctl; zero is returned if successful, -1 is returned in case of error. Call
edt_msg_perror() to get the system error message.
22 EDT, Inc. June 2001

PCI53B User’s Guide Writing Applications
Example Applications
To help you get started, several example applications have been provided. Many are explained below.

p53btest

Demonstrates all functions of the PCI53B device driver, including error insertion and specifying the
intermessage gap.

Usage p53btest [-l n] -u n [-b n] [-n n] [-p]

Arguments

-l n Set loop count to n—number of times program repeats.
The default is 1; 0 repeats the program until you press <Control-C>.

-u n Set which PCI53B board to monitor, in case more than one board is installed.

-b n Specify the bus channel to use. 0 = primary; 1 = secondary. The default is 0.

-n n Set the timeout in µsec for no response.

-p Pause after an error.

Notes You must specify which board to use when you invoke this program.

bctest
Demonstrates bus controller transmitting and receiving data.

Usage bctest -x | -r [-l n] [-w n] [-s n] [-t n] [-b n] [-u n] [-R n]

Arguments

-x Bus controller transmits and remote terminal receives.

-r Bus controller receives and remote terminal transmits.

-l n Set loop count to n—number of times program repeats the command.
The default is 1; 0 repeats the command until you press <Control-C>.

-w n Set word count to n. The maximum is 32. The default is 1.

-s n Set number of subaddresses to n. The default is 1.

-t n Set remote terminal address to n. The default is 1; 31 broadcasts to all remote termi-
nals.

-b n Specify the bus channel to use. 0 = primary; 1 = secondary. The default is 0.

-u n Set which PCI53B board to use, in case more than one board is installed. The default
is 0.

-R n Retry n times in case of error, switching to the other channel with each retry. The de-
fault is 0.

Notes You must invoke this program with at least one of the arguments -x or -r.
EDT, Inc. June 2001 23

Writing Applications PCI53B User’s Guide
rttest
Demonstrates remote terminal transmitting and receiving data.

Usage rttest -t n [-r|-x] [-u n] [-s n] [-w] [-l n]

Arguments

-t n Set remote terminal address to n. The default is 1.

-r Wait for bus controller to specify that remote terminal is to receive data.

-x Wait for bus controller to specify that remote terminal is to transmit data.

-u n Set which PCI53B board to use, in case more than one board is installed. The default
is 0.

-s n Wait for bus controller to specify that remote terminal is to transmit data to or receive
data from subaddress n. You can enter more than one subaddress; if you do, retype -
s each time. For example:
rttest -t 3 -x -s 1 -s 2

-w Wait for the user to type a <Return>, then check what the bus controller has requested.

-l n Specify a loop count. A value of 0 loops forever. While looping, the device keeps track
of how many subaddresses it has seen. The default is 1.

-q Set the RTs not to queue data received. Incoming data then overwrites any previous
values and the value returned by a read is simply the last received.

-X m Sets the transmit-queue mask to m, a 32-bit hexadecimal number. The default is 0. For
each RT whose corresponding bit is set, the RT will queue data to be transmitted. If the
corresponding bit is clear, the RT will not internally queue data to be transmitted.

Notes You must invoke this program with the argument -t, and, if using -s, also one of
-x or -r.

After initializing, the board responds to commands either to receive or to transmit as
long as the remote terminal is active.

rttest always initializes the data to be sent when the bus controller requests it, re-
gardless of whether it is waiting for a transmit or receive command.
24 EDT, Inc. June 2001

PCI53B User’s Guide Writing Applications
bm
Demonstrates monitoring of all data on the 1553 bus or data transmitted by the specified PCI53B only.

Usage bm [-c] [-h] [-v] [-s] [-f] [-m n] [-w n] [-u n]

Arguments

-c Count words.

-h Show history only, then exit.

-u n Set which PCI53B board to monitor, in case more than one board is installed. The de-
fault is 0.

-v Monitor in verbose mode—show the time stamp of each word on the bus, and state of
the board and bus as specified in pci53bi.h.

-s Monitor in symbolic mode—disassemble command words. Also report error status
and which bus experienced the error.

-f Clears all history from the bus monitor.

-m n Specifies the RT monitor mask—a 32-bit hexadecimal number allowing you to specify
which subaddresses to monitor. Each bit can mask the corresponding subaddress—a
value of 0 ignores that subaddress, a value of 1 monitors it. The default is FFFF FFFF,
which monitors all subaddresses.

-w n Waits n words before the device returns, which can cut down on system load when ap-
propriate. The default is 1.

-p Generates output that is more suitable for automated parsing.

Notes The bus monitor program shows the history of the bus (unless invoked with -f), then
waits for new activity. Under Solaris or Linux, pressing <Ctrl-\> while running this
program produces a summary of how many times each subaddress has been seen so
far.
EDT, Inc. June 2001 25

Writing Applications PCI53B User’s Guide
setdebug
Sets the debugging level and the interrupt debug level.

Usage setdebug [-u n] [-d n] [-i n] [-r] [-C n]

Arguments

-u n Set which PCI53B board to use, in case more than one board is installed. The default
is 0.

-d n Set the debug level. Valid values are:
0 no debugging
1 enables verbose mode when you invoke modstat(8)
2 traces start and end of routines

-i n Set the interrupt debug level. Valid values are:
0 no debugging
1 show interrupts as bus operates

-r Reports current debug level.

-C n Configure in direct-coupled mode. Cleared by system reboot; must be rerun at boot
time to initialize the PCI53B to direct-coupled mode. Valid values are:
0 transformer-coupled (This is the default.)
1 direct-coupled

xmt1553
Places stdin into the data words of RT receive commands and outputs them to the 1553B bus. Use this
program as a companion to rcv1553.

Usage xmt1553 [-u n] [-b n] -t n

Arguments

-u n Set which PCI53B board to use, in case more than one board is installed. The default
is 0.

-t n Set which remote terminal to receive the commands.

-b n Specify the bus channel to use. 0 = primary; 1 = secondary. The default is 0.

Notes You must specify the remote terminal when you invoke this program.

rcv1553
As a remote terminal, receives commands from the 1553B bus and copies the data words contained therein
to stdout. Use this program as a companion to xmt1553.

Usage rcv1553 [-u n] -t n

Arguments

-u n Set which PCI53B board to use, in case more than one board is installed. The default
is 0.

-t n Set which remote terminal receives the commands.

Notes You must specify the remote terminal when you invoke this program.
26 EDT, Inc. June 2001

PCI53B User’s Guide Writing Applications
testdriver
Demonstrates continuous double-buffered bc_auto structure execution.

Usage testdriver [-u n] [-v] [-n n] [-l n] [-w n] [-s n] [-S]

Arguments

-u n Set which PCI53B board to use, in case more than one board is installed. The default
is 0.

-v Turns on verbose mode. The default is off.

-n n Set the size of the bc_auto structure array. The default is 128.

-l n Set the number of times to loop through the array. The default is 30.

-w n Set the intermessage gap, in microseconds. The default is 10,000 (10 ms).

-s n Set the number of seconds to wait before continuing execution after a halt. The default
is 0.

Notes See page 38 for further details about the bc_auto programming interface.

mem_pci53bi
Sets the memory management options for the bc_auto array and remote terminal data structures; also
enables or disables separate transmit and receive buffers per remote terminal.

Usage mem_pci53bi [-u n] [-r] [-f] [-s n] [-b n]

Arguments

-u n Set which PCI53B board to use, in case more than one board is installed. The default
is 0.

-r Generates a report to stdout showing current memory usage. This option can be used
with other options.

-f Release all memory allocated to remote terminals.

-s n If n is set to 1, enables separate transmit and receive buffers for remote terminals. If n
is set to 0, disables separate transmit and receive buffers for remote terminals.The de-
fault is 0. Memory usage is 2048 bytes when disabled, 4096 bytes when enabled.

-b n Specify thenumber of elements in bc_auto array to allocate in the driver.
EDT, Inc. June 2001 27

Writing Applications PCI53B User’s Guide
Opening The PCI53B Driver
For all 1553B modes, the initial access to the PCI53B driver is done with the p53b_open() library call,
specifying the unit number and the type of bus element you want to open.

Valid bus element types are BUS_CONTROLLER, BUS_MONITOR, or RT_0–RT_30, allowing different
applications to open the same board up to 32 times simultaneously. (RT_31 is also a valid bus element type
if you’ve configured your board using the 1553A firmware, as described on page 3.) By specifying different
bus element types each time an application opens a device, you can have, for example, a bus controller and
a bus monitor running at the same time, each accessing the sole PCI53B board installed in your system. If
you establish and stick to a naming convention for your applications, you can avoid conflicts and confusion.

Reading and Writing Data To and From the PCI53B
The driver provides access to bus controller, remote terminal, and bus monitor modes, using p53b_read
and p53b_write library calls. Mode codes can be sent using p53b_ioctl. As a remote terminal, many
mode codes are handled by the hardware, but ioctls are available to set and inquire mode code information,
and to allow an interrupt to the user application upon receipt of a mode code.

In Bus Controller Mode
The following example shows how to place the PCI53B in bus controller mode:

EdtDev *p53b_bc = p53b_open(0, BUS_CONTROLLER);

In bus controller mode, you can set the PCI53B to use the desired channel. The following example sets the
PCI53B to use the primary channel (channel 0):

u_short bus = 0; /* 0 = primary channel, 1 = secondary */
p53b_ioctl(p53b_bc, P53S_BUS, &bus);

The p53b_read library call causes the bus controller to send an RT Transmit command. The remote
terminal sends data and status to the bus controller. This is referred to as BC Receive. The p53b_write
library call causes the bus controller to send an RT Receive command. The remote terminal will then receive
data from the bus controller. This is referred to as BC Transmit. Examples and discussion are provided
below.

See bctest.c for more example code showing reading and writing in bus controller mode.

If you want to use, dynamic bus control, see Using Dynamic Bus Control on page 36.

In Remote Terminal Mode
The following example shows how to place the PCI53B in remote terminal mode. It also sets the remote
terminal address to 1.

EdtDev *p53b_rt1 = p53b_open(0, RT_1);

The p53b_read library call returns data that has arrived at the PCI53B board in response to a bus
controller sending data with a BC Transmit command. This is referred to as RT Receive. The p53b_write
library call loads data on the PCI53B board to be sent to the bus controller in response to a BC Receive
command. This is referred to as RT Transmit. Examples and discussion are provided below.

See rttest.c for more example code showing reading and writing in remote terminal mode.
28 EDT, Inc. June 2001

PCI53B User’s Guide Writing Applications
Queue Mask

The PCI53B also allows you to set a queue mask—a 32-bit number wherein each bit corresponds to an RT
subaddress. Setting a bit to 1 queues the data for the corresponding subaddress, ensuring that no data for
that subaddress will be lost. If you are only interested in the latest value for a given subaddress, set the
corresponding bit in the queue mask to 0 instead. The default setting is all zeros. The following example
sets the queue mask for subaddress 2:

u_int mask = 1 << 2;
p53b_ioctl(p53b_p, P53S_QUEUEMSK, &mask);

Transmit Queue Mask

The P53S_XMTQUEUEMSK ioctl command takes the address of an unsigned integer, and causes the P53B
driver to queue up to 1024 RT write operations (like the rcvmask queue). The RT data is then automatically
updated from the transmit queue immediately following a BC transmit command to RT.

Subaddress word count must be 16 or greater for reliable operation.

The P53S_XMTQUEUESRQ ioctl command also takes the address of an unsigned integer and causes the
RT's service request (srq) bit to be inserted automatically when p53b_write() places data in the subaddress
specified by the srq mask. The srq bit will be cleared when the BC asks for a transmit of the last p53b_write()
queued.

See P53S_XMTQUEUEMSK and P53S_XMTQUEUESRQ in the sample program rttest.c.

In Bus Monitor Mode
The following example shows how to place the PCI53B in bus monitor mode, in which it monitors all data
on the bus:

EdtDev *p53b_bm = p53b_open(0, BUS_MONITOR);

Thep53b_read library call returns the data that was monitored on the 1553B Bus. This data contains status
words, command words, data, and time stamps. This is referred to as BM Receive. Examples and
discussion are provided below.

Per-word Error Facilities

Each command or status word on the 1553 bus has an associated error status. An application viewing data
in bus monitor mode can detect the associated error status in the q_elem data structure, which is defined
as follows:

struct q_elem {
u_char cmd ; /* Bits 0x3: set to new message state if cmd or status */

/* Bit 0x08: holds bus address (0 or 1) */
/* Bits 0xf0: holds message type when received */

u_char error; /* shows errors detected by board; if no errors, shows
0*/

u_short word ; /* the word itself */
u_int time ; /* timestamp (see Timestamp on page 30 for details)*/

} ;

Macros can set and access the bits in the cmd element. They are defined as follows:
EDT, Inc. June 2001 29

Writing Applications PCI53B User’s Guide
/*
* Defines to access fields of the cmd element of the q_elem struct.
*/

#define GET_QELEM_MSGTYPE(x) (x >> 4)
#define SET_QELEM_MSGTYPE(x, y) (x = (x & ~0xf0) | (y << 4))
#define GET_QELEM_CMD(x) (x & 0x03)
#define SET_QELEM_CMD(x, y) (x = (x & ~0x03) | y)
#define GET_QELEM_BUSADDR(x) ((u_char) (((u_char) (x & 0x08)) >> 3))
#define SET_QELEM_BUSADDR(x, y) (x = (x & ~0x08) | (y << 3))

See bm.c for an example of the use of these macros.

The error types are defined in pci53bi.h and are as follows:

P53B_PARITY bad parity
P53B_HIWORD too many words received
P53B_LOWORD too few words received, or timeout
P53B_NONCONT noncontinuous error detected
P53B_BADCV manchester code violation (see 1553B specification)
P53B_DATAMATCH mismatch between sent or received
P53B_SYNCERR unexpected sync bits

Timestamp
The timestamp of the q_elem structure is set to the lower 32 bits of the 64-bit embedded controller
timestamp. The 32-bit setting should be sufficient unless you need to use absolute time, which needs 64 bits.
To use absolute time:

1. Call p53b_ioctl (p53b_p,P53G_TIME_HI,&time_hi); where time_hi is a u_int.

2. Shift time_hi 32 bits to the left.

3. Combine the two 32-bit sections with the bitwise OR operator.

See checkp53b.c for an example.

Clock Synchronization

To synchronize your controller clock with your system clock, run checkp53b -s, or use that code to run in
your program. You can set your system clock to an atomic clock at
http://www.boulder.nist.gov/timefreq/service/its.htm.

After you synchronize the p53b to your system or host clock, you can modify bm.c to print the actual time
as follows:

Set zerotime to 0 instead of reltime on line 617. This change alone will provide the lower 32 bits of
microseconds relative to 01/01/1970. To get the high 32 bits, use the p53b_ioctl() above. Using code in
checkp53b.c, you can then display the 64-bit actual time in any of these formats.

Read and Write Data Structures
In bus controller and remote terminal modes, thep53b_read and p53b_write library calls are performed
passing the address of the structures defined below. These structures are needed because the MIL-STD-
1553B interface can deal with more than one remote terminal, each of which can have more than one
subaddress. These structures allow the application to communicate to the driver the word counts and
status of each subaddress. The structures also use a mask to allow a remote terminal to specify that it must
wait for a transmission to a specific subaddress, or a request for data from a specific subaddress.
30 EDT, Inc. June 2001

http://www.boulder.nist.gov/timefreq/service/its.htm

PCI53B User’s Guide Writing Applications
The following structures, defined in pci53bi.h, are used to collect data received and sent to the PCI53B using
p53b_read and p53b_write library calls.

/*
* buffer for read/write library call while in bus controller mode
* BC receive/transmit
*/

struct bc_buf
{

short rt_addr ; /* Remote terminal address */
short count[NUMSUBS] ; /* Word count per subaddress */
u_short data[NUMSUBS][32] ; /* Actual data */
short status[NUMSUBS] ; /* Status received per subaddress */

}

/*
* buffer for read/write library call while in remote terminal mode
* RT receive/transmit
*/

struct rt_buf
{

u_int mask ; /* SA mask showing SAs desired */
u_int actualmask ; /* Mask showing act SAs TXferred */
u_short type ; /* Type of return */
short count[NUMSUBS] ; /* Word count per SA */
u_short data[NUMSUBS][32]; /* Actual data */

}

Using the Data Structures as a Bus Controller
For a BC Transmit, the application fills in all of the bc_buf structure except the status field. The driver
fills in the status field after the transmit returns with the status word from the remote terminal. The
count field is an array that contains, for each subaddress, the number of words to write from the data array.
Data arrays corresponding to counts of 0 are not written. The rt_addr field specifies the RT address of the
destination remote terminal. An address of 31 broadcasts the transmission to all remote terminals.

If you have selected bus controller mode (see “IOCTL Parameters” on page 35), the following code
transmits two words (0xa5a5, 0x5a5a) as bus controller to subaddresses 1 and 2 on remote terminal 4:

struct bc_buf buf;
buf.rt_addr = 4;
for (i = 0; i < 32; i++)

buf.count[i] = 0;
buf.count[1] = 2;
buf.data[1][0] = 0xa5a5;
buf.data[1][1] = 0x5a5a;

buf.count[2]= 2;

buf.data[2][0] = 0xa5a5;

buf.data[2][1] = 0x5a5a;

p53b_write(p53b_p, &buf, sizeof(buf));
EDT, Inc. June 2001 31

Writing Applications PCI53B User’s Guide
For a BC Receive, the application fills in all but data and status. The driver fills in the status after the
transmit returns. The count field is the number of words to read for each subaddress. Data arrays
corresponding to counts of 0 are undefined after the read.

For example, the following code performs an RT to BC transfer from remote terminal address 1:

/* Receive 32 words from subaddress 0. After the write, bcbuf.status[0]
* contains status of the transmitting RT */

struct bc_buf bcbuf;

bcbuf.rt_addr = 1;
bcbuf.count[0] = 32;
p53b_read (p53b_p, bcbuf, sizeof(struct bc_buf));

Here’s another example showing a BC to all RTs broadcast (the 31 specifies broadcasting because it is the
RT broadcast address):

/* Send 32 words. No status available after a broadcast */

struct bc_buf bcbuf;

bcbuf.rt_addr = 31;
bcbuf.count = 32;
p53b_write (p53b_p, bcbuf, sizeof(struct bc_buf));

The following code transfers data from RT address 1 to RT address 2:

/* After the ioctl, rtrt.xmtstat and rtrt.rcvstst contain the status
* of the transmitting RT and the receiving RT, respectively */

struct rt_rt rtrt;

rtrt.xmtrt = 1; /* RT 1 transmit */
rtrt.xmtsa = 0; /* start at subaddress 0 */
rtrt.xmcnt = 32; /* transmit 32 words */
rtrt.rcvrt = 1; /* RT 2 receive */
rtrt.rcvsa = 0; /* start at subaddress 0 */
rtrt.rcvcnt = 32; /* receive 32 words (usually the same as xmtcnt) */
p53b_ioctl (p53b_p, PCI53S_RTRT, &rtrt);

Here’s an example showing an RT to all other RTs broadcast:

/* Send 32 words. After the ioctl, rtrt.xmtstat contains the status
* of the transmitting RT. No receive status after a broadcast. */

struct rt_rt rtrt;

rtrt.xmtrt = 1; /* RT 1 transmit */
rtrt.xmtsa = 0; /* start at subaddress 0 */
rtrt.xmcnt = 32; /* transmit 32 words */
rtrt.rcvrt = 31; /* All RTs receive */
rtrt.rcvsa = 0; /* start at subaddress 0 */
rtrt.rcvcnt = 32; /* receive 32 words (usually the same as xmtcnt) */
p53b_ioctl (p53b_p, PCI53S_RTRT, &rtrt);

The structure rt_rt is defined as follows:
32 EDT, Inc. June 2001

PCI53B User’s Guide Writing Applications
/* ioctl for bc issuing rt to rt */
struct rt_rt {

u_short xmtrt ;
u_short xmtsa ;
u_short xmtcnt ;
u_short xmtstat ;
u_short rcvrt ;
u_short rcvsa ;
u_short rcvcnt ;
u_short rcvstat ;

};

Using the Data Structures as a Remote Terminal
For an RT Transmit, the application must fill in the count, mask, and data fields. The driver fills in the
status, type, and actualmask fields. It also updates the count fields with the word count requested
by the bus controller. The count fields are only valid for those subaddresses that were requested by the
bus controller (those having a bit set in the actualmask field). As with the bc_buf structure, the count
is an array that holds the number of words to transfer for each subaddress. All subaddresses with a nonzero
count are initially transferred to the PCI53B board. The mask field contains bits for subaddresses that the
application expects the bus controller to request before p53b_write returns.

If the application requires updating the data to be sent to the bus controller without waiting for the bus
controller to request the data, the application can specify a mask of 0.

The p53b_write library call returns when one of the following events occurs:

• All subaddresses specified by the mask were requested by the bus controller. This returns a type NOR-
MAL.

• One of the subaddresses in the mask was requested a second time by the bus controller before all the
other expected subaddresses were requested. This returns a type UNEXPECTED. (If your mask is all
zeros, UNEXPECTED will not be returned.)

NORMAL1 /* all subaddresses satisfied on write */
UNEXPECTED4 /*2nd receipt of a subaddress before all other SAs satisfied */

The actualmask field contains bits showing which subaddresses the bus controller requested. After one
of these events occurs, the driver updates the actualmask, count, type, and data fields, and returns
from the write.

For an RT Receive, the application must fill in themask field. The mask field contains bits for subaddresses
that the application expects the bus controller to send before the p53b_read returns. A value of 0 in this
field returns immediately with updated data. The driver fills in the rest of the rt_buf structure, including
the actualmask field, which shows which bits the remote terminal received.

The following example shows how to use the mask to make the RT wait for the BC to request a transmission
of the data in subaddress 3.

samask = 1 << 3; /* bit corresponding to bit 3 */
rt_buf.mask = samask;
p53b_write (p53b_p, &rt_buf, sizeof(rt_buf));

The following example shows how to use the mask to make the RT wait for the BC to request that the RT
receive the data in subaddress 3.
EDT, Inc. June 2001 33

Writing Applications PCI53B User’s Guide
samask = 1 << 3; /* bit corresponding to bit 3 */
rt_buf.mask = samask;
p53b_read (p53b_p, &rt_buf, sizeof(rt_buf));

Sending Mode Codes
A bus controller can send a mode code with the PCI53S_MODECODE ioctl. This ioctl takes a pointer to the
following structure:

struct mc_buf
{

u_short rtaddr; /* RT address to send */
u_short code; /* mode code */
u_short data; /* optional data */
u_short status; /* status returned */

}

The application always fills in rtaddr and the mode code field itself. The driver always returns from the
ioctl with the status set. The application fills in the data field for mode codes that send a data word to the
remote terminal—Synchronize With Data Word, Selected Transmitter Shutdown, and Override Selected
Transmitter Shutdown. The driver fills in the data field for mode codes receiving data from the remote
terminal—Transmit Vector Word, Transmit Last Command, and Transmit Built-in Test Word.

The following code shows an example of a bus controller sending the Transmit Vector Word mode code
using the ioctl. Mode code constants are defined in pci53bi.h—substitute TVW as necessary.

mc.code = MC_TVW; /* transmit vector word */
/* set mc.data if sending a data word */
mc.rtaddr = 1; /* Send to RT 1; set to 31 for broadcast */
p53b_ioctl (p53b_p, P53S_MODECODE, &mc);
/* status returned in mc.status */
/* mc.data contains data word, if any */
printf (“TVW status %x data %x\n”, mc.status, mc.data) ;

Receiving Mode Codes
As a remote terminal, the PCI53B can respond to any mode code with a possible application interrupt using
P53B_MODE_SIG ioctls. In addition, the PCI53B responds to certain mode codes as follows:
34 EDT, Inc. June 2001

PCI53B User’s Guide Writing Applications
*

In order to respond to these mode codes, the application can ask for a signal upon receipt of a mode code
with the P53B_MODE_SIG ioctl. This ioctl takes a pointer to a mode_sig structure.

struct mode_sig
{

u_int mask ; /* mask of the requested mode codes */
u_short signal ; /* signal to be sent on mode code */

}

After receiving the signal (or at any time), the application can execute an p53g_MODECODE ioctl. This ioctl
takes a pointer to a mode_data struct to return the last mode code received and associated data.

struct mode_data
{

u_short data ; /* optional data */
u_short code ; /* mode code received */

}

The ioctl p53g_MODECOUNT allows you to get the number of mode codes queued for a remote terminal. It
takes as its third argument an address of an unsigned integer in which to store the result. The ioctl
p53g_MODEQ allows you to get the entire queue of mode codes for a remote terminal. It takes a pointer to
the mode_data struct.

Status Bits

ioctls are provided so that a remote terminal can set each of the status bits individually. Other than the
service request bit, these are straightforward and can be set or cleared by sending the ioctls defined in
p53bi.h. The service request bit is unique, however; specific ioctls cause the bit to be cleared pending a
specific event. The P53B_SRQ_X clears the service request bit on the next receipt of a bus controller transmit
request. The P53B_SRQ_V clears the service request bit on the next receipt of a Transmit Vector Word mode
code.

IOCTL Parameters

ioctl parameters are defined in p53bi.h. Relevant parameters are documented in “Appendix A ioctl()
Parameters” on page 51. Applications can use them to access the device driver. See example programs for
details on their uses. Use p53b_ioctl to make ioctl calls.

Mode Code PCI53B Action

Transmit status word Transmit contents of status register from the message
processor

Transmit vector word Transmits the contents of the vector word register from the
message processor. Set with P53B_LOAD_TVW.

Synchronize with data word To be returned by the P53B_GET_MODECODE ioctl

Transmit last command Transmits the contents of the command/status word register
from the message processor

Transmit built-in test word Transmits the contents of the built-in test error register from
the message processor

Table 4. Mode Code Responses
EDT, Inc. June 2001 35

Writing Applications PCI53B User’s Guide
Using Dynamic Bus Control
Use dynamic bus control to change which bus device is your controller. Once a new controller is
established, the old controller should become a remote terminal. To send a dynamic bus control mode code
to to a remote terminal, you must first ensure the remote terminal can accept controller status. To set a
remote terminal that is attached to this PCI53B board to accept controller status, perform the following:

u_short save_status;

p53b_ioctl(p53b_p, P53G_STATUS, &save_status);

save_status |= P53B_BUS_ACPT;

p53b_ioctl(p53b_p, P53S_STATUS, &save_status);

To send a dynamic bus control mode code to a selected remote terminal, perform the following:

struct mc_buf mc;

mc.code = MC_DBC;

mc.rtaddr = selected_rt;

mc.status = mc.data = 0;

p53b_ioctl(p53b_p, P53S_MODECODE, &mc);

See sample program p53b_dbc.c for more details.

Specifying Error Insertion and Intermessage Gap for System Tests
In order to allow you to conduct realistic tests of your system, the PCI53B allows you to insert errors and
specify intermessage gap times. The intermessage gap is the number of µs between commands. In bus
controller mode, use the bc_auto structure (described on page36) to insert errors or set the intermessage
gap.

In order to ensure that the end of the previous command is received before the next command is sent,
commands cannot be issued infinitely fast. Therefore, specifying an intermessage gap time of less than 20
µs does not change the driver behavior.

In remote terminal mode, use the P53S_RT_ERR ioctl to insert the specified error. Set it to zero (the default)
to specify that no errors are to be inserted.
36 EDT, Inc. June 2001

PCI53B User’s Guide Writing Applications
The following errors can be inserted.

bc_auto Structure

The bc_auto structure specified in p53b.h is used in bus controller mode to insert errors or to specify an
intermessage gap for the purposes of testing your system. Each bc_auto structure defines one command
to send on the bus. You can define a list of commands to send consecutively by defining an array of
bc_auto structures. After sending the command specified by each structure, the embedded SPARC waits
a specified number of µseconds and sends the next command without the host computer’s participation.

The bc_auto structure contains the following fields:

cmd = CMDWORD(rt,sa,wc,tr)
The command to send. The macro CMDWORD builds the command using the specified
remote terminal, subaddress, word count, and transmit bit.

cmd2 Set this optional field to initiatea remote terminal-to-remote terminal transfer.
Otherwise set to zero.

status The status returned by the remote terminal.

status2 Optional second status word returned from a remote terminal-to-remote terminal transfer.
Otherwise set to zero.

waittime The number of µseconds to wait before issuing the next command. (Specifying a waittime
of less than 20 µs does not change driver behavior.)

error Specifies the error to insert. A zero issues no error.dataA 32-word array specifying the
associated data. When the bus controller is sending data to a remote terminal, initialize this
field with the required data. When the bus controller is receiving data from a remote
terminal, the array contains the data when the command is completed. After you initialize
the array of bc_auto structures, you must load the array and start it executing.

Use the following parameters to p53b_ioctl:

1. Specify the number of elements the array contains with P53S_AUTO_SIZE.

2. Specify the number of commands to execute with P53S_AUTO_TODO. Ordinarily, if you wish each
command in the array to be sent once, specify a number equal to the number of elements in the array
specified in P53S_AUTO_SIZE, above. However, you can specify that the commands in the array be

P53B_ Error Code Generated by Description

PRTY_ERROR BC or RT A word is transmitted with a parity error.

GAP_ERROR BC or RT A word that should be transmitted immediately after another
word is transmitted after a gap instead.

HIWORD_ERROR RT only The RT sends more words than requested.

LOWORD_ERROR RT only The RT sends fewer words than requested.

NORESP_ERROR RT only The RT does not respond.

NORESP0_ERROR RT only The RT does not respond on bus 0.

NORESP1_ERROR RT only The RT does not respond on bus 1.

SLOW_ERROR RT only The RT responds with status more slowly than the required 12 s.

SYNC_ERROR RT only The RT sends a data SYNC pattern with the status word.

Table 5. Error Codes
EDT, Inc. June 2001 37

Writing Applications PCI53B User’s Guide
issued more than once. To do so, specify a larger number than P53S_AUTO_SIZE. Your application
loops through the array until the number of commands sent equals the number you specified.

If you pass 0 as an argument to P53S_AUTO_TODO, execution will continue until you send the ioctl
parameter P53S_AUTO_STOP.

3. Specify the address of the array with P53S_AUTO_LOAD. P53S_AUTO_LOAD copies the data from the
application to the start of the array in the PCI53B.

4. Start execution with P53S_AUTO_GO.

Other parameters specify optional behavior:

• If the application must wait until certain commands have all been issued before resuming, specify that
with P53G_AUTO_WAITCNT. The third parameter is the address of an unsigned integer specifying an
absolute count of bc_auto commands. The driver counts the number of commands executed, starting
at 0 and incrementing once for each command executed; it wraps at 232. Your application will block
until the specified number of commands have executed.

• Check the number of commands that have been executed with P53S_AUTO_CNT.

• Specify the number of commands to continue executing (after the previous set specified by
P53S_AUTO_TODO or P53S_AUTO_CONT, with P53S_AUTO_CONT. The third parameter is the address
of an unsigned integer specifying an absolute count of bc_auto commands. The driver counts the num-
ber of commands executed, starting at 0 and incrementing once for each command executed; it wraps
at 232. If processing of bc_auto commands has stopped, it will resume and the specified number of
commands will be executed. If processing is ongoing, it will continue until the specified number of
commands have been executed, overriding any previously specified stopping points.

• Check the number of errors that have been encountered with P53G_AUTO_ERR.

• Specify an offset into the bc_auto array using P53S_AUTO_OFFSET. The argument to this parameter
is the offset into the array at which to start loading data; run this before P53S_AUTO_LOAD to modify
where the load occurs (or the unload using P53S_AUTO_DUMP). This is useful for double-buffering—
you can load half of an array and cause the PCI53B to begin execution of that half while you specify the
offset and load new information into the second half. This enables continuous bc_auto execution.
This feature allows you to output or input data continuously, treating the bc_auto structure in hard-
ware as a circular buffer. For example, if you know that the PCI53B has finished with commands in
structure locations 50–99, you can start reloading at location 50 while the PCI53B processes commands
in locations 0–49. See the example program testdriver.c (documented on page 27) for an example of this
use.

The following example places the PCI53B in bus controller mode and loops through the list of commands
three times, inserting an intermessage gap of 1000 µs (1 ms).

p53b_p = p53b_open(unit, BUS_CONTROLLER);

if (p53b_p == NULL)
{

p53b_perror (“p53b_open”);

exit(1);
38 EDT, Inc. June 2001

PCI53B User’s Guide Writing Applications
}

/*
* test transfer of 3 passes through autotest
* with a delay of 1 ms at end of frame without errors
* each command issues an RT receive command of ten words
*/

wc = 10 ; /* Set word count */
tr = 0 ; /* Set transmit bit to receive */
rt = 1 ; /* Set remote terminal address */
tmpval = 0x1111 ;
for(i = 0 ; i < 10 ; i++)
{

a_p = &testbuf[i] ;
sa = i + 1 ; /* Set subaddress */
a_p->cmd = CMDWORD(rt,sa,wc,tr) ;
a_p->cmd2 = 0 ;
for(j = 0 ; j < 32 ; j++) /* Initialize test data */

a_p->data[j] = tmpval ;
tmpval += 0x1111 ;
a_p->status = 0 ;
a_p->status2 = 0 ;
a_p->error = 0 ;
a_p->waittime = 1000 ;

}
/* set size to load autotest */
size = 10 ;
p53b_ioctl(p53b_p,P53S_AUTO_SIZE,&size) ;
/* set number of autotest items to execute */
todo = 30 ;
p53b_ioctl(p53b_p,P53S_AUTO_TODO,&todo) ;
/* load it */
addr = (u_int)testbuf ;
p53b_ioctl(p53b_p,P53S_AUTO_LOAD,&addr) ;
/* start executing */
p53b_ioctl(p53b_p,P53S_AUTO_GO,0) ;
EDT, Inc. June 2001 39

Writing Applications PCI53B User’s Guide
The following example places the PCI53B in bus controller mode and inserts a gap error in the command
transmitted.

u_short mode = P53B_BC;
struct bc_auto testbuf[10];
p53b_ioctl (p53b_p, P53S_MODE, &mode);
wc = 5 ;
tr = 0 ;
sa = 1 ;
rt = 1 ;
a_p = testbuf ;
a_p->cmd = CMDWORD(rt,sa,wc,tr) ;
a_p->cmd2 = 0 ;
a_p->status = 0 ;
a_p->status2 = 0 ;
a_p->waittime = 0 ;
a_p->error = P53B_GAP_ERROR ;
/* set size, load, and go */
size = 1 ;
p53b_ioctl(p53b_p,P53S_AUTO_SIZE,&size) ;
/* set number of autotest items to execute */
todo = 1 ;
p53b_ioctl(p53b_p,P53S_AUTO_TODO,&todo) ;
/* load it */
addr = (u_int)testbuf ;
p53b_ioctl(p53b_p,P53S_AUTO_LOAD,&addr) ;
/* start it */
p53b_ioctl(p53b_p,P53S_AUTO_GO,0) ;

The following example places the PCI53B in remote terminal mode, sets the remote terminal address to 1,
and inserts a parity error whenever a command is received from the bus controller.

u_short mode = P53B_RT;
u_short addr = 1;
u_short rt_err = P53B_PRTY_ERROR;
p53b_ioctl (p53b_p, P53S_MODE, &mode);
p53b_ioctl (p53b_p, P53S_MYRTADDR, &addr);
p53b_ioctl(p53b_p,P53S_RT_ERR,&rt_err);

See p53btest.c for more example code showing error insertion and specifying intermessage gap times.

Scheduling bc_auto Structures

The example program bc_auto_sched.c provides examples of various scheduling mechanisms for
bc_auto structures. The four most significant bits of the error element of the bc_auto structure slect the
scheduling type. When these bits are all 0, the structure is scheduled as usual. The bits are defined in
p53bi.h as follows:

#define P53_SCHED_NRM 0x0000
#define P53_SCHED_ABS 0x1000
#define P53_SCHED_REL 0x2000
#define P53_SCHED_HW 0x3000
#define P53_NOOP 0x8000
40 EDT, Inc. June 2001

PCI53B User’s Guide Writing Applications
The NOOP bit is independent of the other scheduling bits, and therefore can be used in concert with them.
The absolute, relative, and hardware scheduling operations share two bits and are therefore mutually
exclusive. One bit is reserved for future use.

NOOP Bit

TheNOOP bit can be used to create a bc_auto structure that is useful for scheduling the following bc_auto
command word. When the NOOP bit is set, the PCI53B executes no commands; all that it does is to wait for
the specified intermessage gap time. The intermessage gap can be controlled by setting the waittime
element of the bc_auto structure, or by enabling one of the scheduling operations. The bc_auto
operation is performed first, and then the intermessage gap is observed as specified by the requested
scheduling operation. Therefore, you can schedule a bc_auto structure by preceding it with a NOOP
combined with one of the scheduling operations.

Absolute Scheduling

The host computer has a clock, and a clock is also contained within the embedded microprocessor on the
PCI53B. Absolute scheduling is concerned with both clocks and two parameters: a global variable that
indicates an absolute time—you can think of it as the time at which an alarm will go off—and an offset in
microseconds in the waittime element of the bc_auto structure. In order to make use of absolute
scheduling, you must first initialize the embedded clock using the time of day specified by the host
computer’s clock. You can then set the alarm. When the embedded clock reaches the time specified by the
alarm, the PCI53B waits for the time specified by the waittime element, and then executes the next
command.

The following example initializes the PCI53B clock and then sets the alarm for thirty seconds later.

{
struct timeval tm;

/* Initialize the absolute timer on the p53bi */
gettimeofday(&tm);
p53b_ioctl(p53b_p, P53S_TIMEVAL, &tm);

/* Set the absolute variable to current time + 30 seconds */
tm.tv_sec += 30 ;
p53b_ioctl(p53b_p, P53S_TIMEABS, &tm);

}

Relative Scheduling

Relative scheduling affects the length of the intermessage gap. You can use relative scheduling by setting
the SCHED bits to P53_SCHED_REL in a set of bc_auto structures. Set the waittime in the first structure
to zero to initialize a time marker. Then set the waittimes in the following structures to increasing values;
these will be interpreted as microsecond offsets from the time marker.

Hardware Scheduling

A bc_auto structure with the P53_SCHED_HW bit set observes an intermessage gap based not on time, but
on a specified number of external hardware interrupts. These are specified by the waittime element.
Values of 0 and 1 both wait for one interrupt. Values greater than 1 wait for the specified number of
interrupts before ending the intermessage gap.
EDT, Inc. June 2001 41

Connector Pinout PCI53B User’s Guide
Connector Pinout

The PCI53B board uses a 9-pin male D shell connector, AMP part number 748875-1. Most applications will
not require this connector.

The following pinout diagram describes the connection from the PCI53B board to the cable.

Pin Signal Description

1 VCC output, fused 5 V for external transceivers, maximum 500 mA

2 RXD serial debug port input from onboard SPARC,
Channel A RS-232 receive

3 TXD serial debug port output from onboard SPARC,
Channel A RS-232 transmit

4 IRIG B input, analog time signal from GPS, to synchronize the internal
timebase counter (not implemented)

5 GND logic ground

6
7

SYNC+
SYNC–

in/out, RS-422 differential pair to synchronize timebase counters
among multiple PCI53B boards (independent of an IRIG B time
source)

8 SPARE+ input, Rs-422 differential pair

9 SPARE–

Table 6. Connector Pinout
42 EDT, Inc. June 2001

PCI53B User’s Guide Registers
Registers

The PCI53B has two memory spaces: the memory-mapped registers and the configuration space.
Expansion ROM and I/O space are not implemented. Applications can access the PCI53B registers through
the library routines provided.

The information in this section is provided for completeness. Most users will not need this level of detail.

Configuration Space
The configuration space is a 64-byte portion of memory required to configure the PCI Local Bus and to
handle errors. Its structure is specified by the PCI Local Bus specification. The structure as implemented for
the PCI53B is as shown in Figure 3 and described below.

Figure 3. Configuration Space Addresses

Values for the status and command fields are shown in Tables 7 and 8. For complete descriptions of the bits
in the status and command fields, see the PCI Local Bus Specification, Revision 2.1. Complete reference
information is given on page 50.

Address Bits 31 16 15 0

0x00 Device ID = 0x20 Vendor ID = 0x123D

0x04 Status (see below) Command (see below)

0x08 Class Code = 0x088000 Revision ID = 0
(will be updated)

0x0C BIST =
0x00

Header Type=
0x00

Latency Timer
(set by OS)

Cache Line Size
(set by OS)

0x10 Base Address Register (set by OS)

not implemented

0x3C Max_Lat =
0x04

Min_Gnt =
0x04

Interrupt Pin =
0x01

Interrupt Line
(set by OS)

Bit Name Value Bit Name Value

0–4 reserved 0 10 DEVSEL Timing 0

5 66 MHz Capable 0 11 Signaled Target Abort implemented

6 UDF Supported 0 12 Received Target Abort implemented

7 Fast Back-to-back Capable 0 13 Received Master Abort implemented

8 Data Parity Error Detected implemented 14 Signaled System Error implemented

9 DEVSEL Timing 1 15 Detected Parity Error implemented

Table 7. Configuration Space Status Field Values
EDT, Inc. June 2001 43

Registers PCI53B User’s Guide
PCI Local Bus Addresses
Figure 4 describes the PCI53B interface registers in detail. The addresses listed in Figure 4 are offsets from
the gate array boot ROM base addresses. This base address is initialized by the PCI Local Bus host operating
system at boot time.

Figure 4. PCI Local Bus Addresses

Host File
The host file is a read-write register file of sixteen 32-bit words from address 0x00 to 0x3F. It is byte-
addressable, but the PCI uses little-endian byte ordering (least significant bits start at 0), while the SPARC
uses big-endian byte ordering.

The PCI host can read or write any location.

The SPARC can read these registers asynchronously, but cannot write them. Because the SPARC might read
a register while the PCI host is writing it, thereby getting invalid data, software must coordinate host and
SPARC accesses using semaphores and interrupts.

Bit Name Value Bit Name Value

0 IO Space 0 6 Parity Error Response implemented

1 Memory Space implemented 7 Wait Cycle Control 0

2 Bus Master implemented 8 SERR# Enable implemented

3 Special Cycles 0 9 Fast Back-to-back Enable implemented

4 Memory Write and
Invalidate Enable

0 10–15 reserved 0

5 VGA Palette Snoop 0

Table 8. Configuration Space Command Field Values

Address Bits 31 16 15 0

0x8C
reserved0x88

0x84 SPARC interrupt

0x80 Host interrupt

0x7F SPARC

0x40 file

0x3F Host

0x00 file

Byte 3 2 1 0

Word 1 0
44 EDT, Inc. June 2001

PCI53B User’s Guide Registers
SPARC File
The host file is a read-only register file of sixteen 32-bit words from address 0x40 to 0x7F. It is byte-
addressable, but the PCI uses little-endian byte ordering (least significant bits start at 0), while the SPARC
uses big-endian byte ordering.

The onboard SPARC microprocessorcan read or write any location.

The PCI host can read these registers asynchronously, but cannot write them. Because the PCI host might
read a register while the SPARC is writing it, thereby getting invalid data, software must coordinate host
and SPARC accesses using semaphores and interrupts.

Host Interrupt Register
Size 32-bit

I/O read-write

Address 0x88

Bit P53B_ Description

31 HOST_INT The embedded SPARC sets this bit to interrupt the host over the PCI bus. The host
then clears this bit by writing a 1. Also cleared by HALT (bit 29 of the SPARC
interrupt register).

30 not used

29 HINTEN The host sets this bit to enable the host interrupt (bit 31 of this register).

23–0 not used
EDT, Inc. June 2001 45

Registers PCI53B User’s Guide
SPARC Interrupt Register
Size 32-bit

I/O read-write

Address 0x84

Comments Used to allow the host computer to interrupt the embedded SPARC and to manage it.

Bit P53B_ Description

31 not used

30 SPARC_INT Write a 1 to interrupt the SPARC; the SPARC then clears this bit . Reading a value
of 1 indicates that the SPARC hasn’t yet cleared this bit since the last time it was
set.

29 not used

28 TRAPE Read-only: 1 if embedded SPARC is hung on an illegal trap.

27 HALT Set to 1 to halt the embedded SPARC through its reset line. Clear to reboot
SPARC.

26 HANG Set to 1 to hang the embedded SPARC through its bus request line. Clear to
resume operation where it left off.

25 REBOOT (w) Strobe 1 to reinitialize the board, as if it had just been powered on.
PCI configuration space left uninitialized.

24 reserved for EDT internal use

23–0 not used
46 EDT, Inc. June 2001

PCI53B User’s Guide Specifications
Specifications

MIL-STD 1553

Format Redundant serial data bus

Modes Remote terminal (RT), bus controller (BC), bus monitor (BM), in
any combination

Protocol Command/response

Mode Codes All

Coupling Direct or transformer, selected by software, using relays

Built-in test Yes

Connector Trompeter BJ76 Concentric Triax Type Three Lug

Software Drivers for Solaris 2.6+ (Intel and SPARC platforms), Red Hat
Linux 6 for x86, and Windows NT/2000 Version 4.0

Memory 4 MB onboard memory (16 MB optional)

PCI Bus Compliance PCI 2.1S

Power 5 V at 1.2 A with no bus activity or 1.7 A with bus activity at 100%

Environmental

Temperature Operating: 10 to 40° C
Nonoperating: –20 to 60° C

Humidity Operating: 20 to 80% noncondensing at 40° C
Nonoperating: 95% noncondensing at 40° C

Physical Occupies one standard PCI bus slot

Dimensions 3.9" x 6.2" x 0.5"

Weight 6 oz.

Table 9. PCI Bus to MIL-STD 1553B Interface Specifications
EDT, Inc. June 2001 47

Glossary PCI53B User’s Guide
Glossary

address An integer from 0 to 31 specifying to which remote terminal the bus controller is sending
a command or data. An address of 32 indicates a transmission broadcast to all remote ter-
minals.

broadcast Sending a transmission to all remote terminals on the bus, rather than the one specified by
a specific address.

bus A wire connecting a controller with one or more devices in order that commands, data, and
status information can be transmitted and received among them.

bus controller A device on a bus responsible for initiating all commands to send or receive data or status.

bus element The bus controller, bus monitor, or one of the remote terminals.

bus monitor A device on a bus that can watch all the information that is transmitted or received, for di-
agnostic purposes.

channel One wire that can transmit or receive information.

command word A 16-bit word that instructs a device on the bus that it must perform some action.

coupling A way of connecting the bus to the devices it controls.

data word A 16-bit word that represents a value read from, or written to, a device.

device driver The software that integrates an external device with the operating system of a host com-
puter to which it is attached.

direct coupling One method of coupling a device to a 1553 bus. Direct coupling is useful only if the stub is
one foot long or shorter. It is unsuitable for applications requiring high reliability, as a
short circuit in the device or stub can cause the bus to fail.

dual-redundant
A method of implementing redundancy using two of a specific component—in the case of
the 1553 bus, using two channels.

dynamic bus control
A method of bus operation wherein responsibility for assuming the bus controller role can
be passed from one device to another while the bus is operating.

EEPROM Electronically erasable programmable read-only memory.

ioctl An input-output control operation on the PCI53B board, other than reading or writing.

mode code A command that causes devices on the bus to interpret the commands that follow in a dif-
ferent manner.

parity A method of checking for errors to ensure that data is transmitted and received correctly.

primary channel
The main channel of a dual-redundant bus; channel 0 of the PCI53B.

RAM Random access memory.

redundancy A method of ensuring robustness by including more than the required number of a specific
component.
48 EDT, Inc. June 2001

PCI53B User’s Guide Glossary
remote terminal A device on the bus that can transmit and receive data or status only in response to a bus
controller command.

secondary channel
The second channel of a dual-redundant bus; channel 1 on the PCI53B.

status word A 16-bit word specifying the status of a remote terminal.

stub The cable between a 1553 bus and a device to which it is connected.

subaddress An integer between 0 and 31 specifying the specific component or data location of a remote
terminal.

sync The transition within the first 3 µs of a 20-µs serial word, indicating the start of the word
and its identifier—that is, whether it is command or data.

transformer coupling
One method of coupling a device to a 1553 bus. Transformer coupling is required if the
stub is longer than one foot, or for applications requiring high reliability, as a short circuit
in the device or stub cannot cause the bus to fail when transformer coupling is used.
EDT, Inc. June 2001 49

References PCI53B User’s Guide
References

MIL-STD 1553B Military Standard Aircraft Internal Time Division Command/Response Multiplex Data Bus,
Sept. 21, 1978, available from the Department of Defense. Also available from Global Engineering
Documents, (800) 854-7179.

PCI Local Bus Specification, Revision 2.1, 1995. Available from:

PCI Special Interest Group
5440 SW Westgate Drive
Suite 217
Portland, OR 97221
Phone: 800/433-5177 (United States) or 425/803-1191 (international)
Fax: 503/222-6190

www.pcisig.com
50 EDT, Inc. June 2001

http://www.pcisig.com

PCI53B User’s Guide Appendix A ioctl() Parameters
Appendix A ioctl() Parameters

Engineering Design Team recommends that applications use the software library interface documented
in “PCI53B Library Routines” on page 17. This library is designed to be used with the following ioctl
parameters. Others may be defined, but are used for Engineering Design Team’s internal purposes only.

In the list below, x can be replaced by S or G.

P53S_BUS Selects the primary or secondary bus. Set to zero for primary, one for secondary. The
default is primary. Provide the address of an unsigned short as its third argument.

P53S_MODE Used by the library to configure a subdevice as a BUS_CONTROLLER, a BUS_MONITOR,
or RT_0 through RT_30. Not normally used in applications. Provide the address of an
unsigned short as its third argument.

P53S_MYRTADDR
Used by the library to configure the address of an RT subdevice. Not normally used in
applications. Provide the address of an unsigned short as its third argument.

P53G_MYRTADDR
Gets the address of an RT subdevice previously set by P53S_MYRTADDR. Not normally
used in applications. Provide the address of an unsigned short as its third argument.

P53S_MODESIG
Enables MODE CODE events to signal the application process and sets the signal type.
Provide the address of a struct mode_sig as defined in p53b.h as its third argument.

P53G_MODECODE
Get a modecode and optional data as an RT. Blocks until a mode code command addressed
to this RT occurs. Provide the address of a struct mode_data as defined in p53b.h as its
third argument.

P53S_MODECODE
Send a modecode and associated data from a BC. Blocks until an RT responds. Accepts the
address of a struct mc_buf as defined in p53b.h as its third argument.

P53S_SRQ_V Set service request bit in the RT status word and clear on the next transmit vector word.
Provide the address of an unsigned short as its third argument.

P53S_SRQ_X Set service request bit in the RT status word and clear on next transmit request. Provide the
address of an unsigned short as its third argument.

P53S_RTRT Initiate an RT to RT transfer from this BC. Provide the address of a struct rt_rt as
defined in p53b.h as its third argument. See the example provided in “Using the Data
Structures as a Bus Controller” on page 31.

P53G_AVAIL Get the number of 1553 datawords avail from the BM. See sample program bm.c for usage
details. Provide the address of an unsigned int as its third argument.

P53x_LOOPBACK
Set or get the state of the driver RT loopback mode. If nonzero, this mode creates one
shared buffer for RT transmits and receives; therefore, data can be looped back by
transmitting, then receiving, on an RT. If zero, then separate data buffers are used for
transmit and receive data. The default enables loopback mode. Provide the address of an
unsigned short as its third argument.
EDT, Inc. June 2001 51

Appendix A ioctl() Parameters PCI53B User’s Guide
P53x_STATUS Set or get the RT status word. Provide the address of an unsigned short as its third
argument.

P53S_AUTO_OFFSET
Set the offset into the "struct bc_auto" array at which P53S_AUTO_LOAD starts when
loading the array into the PCI53B board memory. For example, you might declare an array
of a hundred bc_auto structs, initialize, load, and start processing half of them, then
initialize and load the remaining half. Provide the address of an unsigned int as its third
argument.

P53S_AUTO_SIZE
Set the size of struct bc_auto array in the PCI53B onboard memory. Execution of
bc_auto commands loops back to the beginning of the array when this number has been
reached. Also controls the number of bc_auto structs transferred in P53S_AUTO_LOAD
and P53S_AUTO_DUMP (send and receive the contents of a bc_auto array). Provide the
address of an unsigned int as its third argument.

P53S_AUTO_LOAD
Upload the contents of a struct bc_auto array to the PCI53B onboard memory. For more
information, see “IOCTL Parameters” on page 35. The third argument must contain the
array address within application memory. Provide the address of an unsigned short as its
third argument.

P53G_AUTO_DUMP
Download the contents of a struct bc_auto array from the PCI53B onboard memory. For
more information, see “IOCTL Parameters” on page 35. The third argument must contain
the array address within application memory. Provide the address of an unsigned short as
its third argument.

P53S_AUTO_TODO
Sets the absolute number of bc_auto array elements for the PCI53B board to process.
Processing does not start until P53S_AUTO_GO is invoked. AUTO_TODO is invoked once
before AUTO_GO is called, then AUTO_CONT is used to continue execution. Provide the
address of an unsigned int as its third argument.

P53S_AUTO_GO
Causes the P53B board to start processing bc_auto array elements. P53S_AUTO_LOAD
must have loaded these elements , and P53S_AUTO_TODO must have set the number of
them to process, before making this call. Provide the address of an unsigned int as its third
argument.

P53S_AUTO_CONT
Increments the number of bc_auto array elements to process, and then either continues
processing if already started, or restarts processing if done. Provide the address of an
unsigned int as its third argument.

P53G_AUTO_WAITCNT
Blocks until the absolute number of bc_auto array elements has been processed. Provide
the address of an unsigned int as its third argument.

P53S_AUTO_STOP
Causes processing of bc_auto array elements to be suspended upon completion of the
current element. The third argument is ignored.

P53G_AUTO_CNT
Get the absolute number of bc_auto array elements completed. Provide the address of an
unsigned int as its third argument.
52 EDT, Inc. June 2001

PCI53B User’s Guide Appendix A ioctl() Parameters
P53G_AUTO_ERR
Returns the number of bc_auto array elements that encountered an error during
processing, since processing started. Provide the address of an unsigned int as its third
argument.

P53G_AUTO_WAIT
Blocks until the absolute number of bc_auto array elements set by P53S_AUTO_TODO
has been completed. The third argument is ignored.

P53x_IMG Set or get the default intermessage gap for BC commands. Provide the address of an
unsigned int as its third argument.

P53S_VWORD Set the RT vector word for transmit vector word mode code. Provide the address of an
unsigned short as its third argument.

The following ioctl parameters set and clear the specified RT status word bits. Provide the address of an
unsigned short as the third argument to all of them.

P53S_INS Instrumentation

P53S_SRQ Service request

P53S_RSV2 Reserved 2

P53S_RSV1 Reserved 1

P53S_RSV0 Reserved 0

P53S_SUBSYSBSY
Subsystem busy

P53S_SUBSYSFL
Sub system fail

P53S_BUS_ACPT
Dynamic BC accept
EDT, Inc. June 2001 53

Appendix A ioctl() Parameters PCI53B User’s Guide
54 EDT, Inc. June 2001

PCI53B User’s Guide

Index
A

absolute scheduling
for bc_auto structures 39

activating an RT device 19
address, defined . 46
application

basic elements of . 16
library routines for 16
suspending . 21

B

BC to all RTs broadcast example code 31
bc_auto structure. 35

absolute scheduling 39
as circular buffer . 36
continuous double-buffered 26
hardware scheduling 39
memory management options for 26
relative scheduling 39
scheduling . 38

bc_buf structure . 29
bctest . 22, 27
bm . 24, 29
broadcast . 6

command received in status word 10
defined . 46

bus
coupling requirements 15
defined . 46
interface, overview of 2
performance . 2
physical characteristics of. 15
physical components of6, 12

bus controller
behavior of . 6
configuring device driver as 27
defined . 46
example program 22

bus element, defined . 46
bus monitor . 6

configuring device driver as 28
defined . 46
error status, detecting 28
example program 24
PCI 53B1 transmissions only. 28

busy bit in status word. 10

C

cable . 6
length of . 6, 12, 14
resistance of . 12
tap points . 12
termination . 12

channels
defined . 46
setting . 27

closing the device . 18
cmd element, macros for 28
CMDWORD macro . 35
command word. 9

defined . 46
mode code . 9
parity . 9
remote terminal address 9
remote terminal subaddress 9
synchronization. 9
transmit/receive . 9
word count . 9

commands from stdin, example program 25
commands to stdout, example program 25
configuring the PCI 53B 3
connector

source for . 12
type . 12

coupling
and cable length 6, 12, 14
defined . 46
direct . 6, 12–13
physical requirements for. 15
transformer . 6, 12, 14

D

data word, defined . 46
deactivating an RT device 19
debugging example program 25
device driver .2, 27

as bus controller . 27
as bus monitor. 28
as remote terminal 27
defined . 46
emulating an entire 1553 system 12
removing

Linux . 4
EDT, Inc. June 2001 53

PCI53B User’s Guide
Solaris. 4
Windows NT. 4

updating . 5
direct coupling . 12–13

defined . 46
double-buffered bc_auto structure example pro-

gram. 26
dual-redundant, defined 46
dynamic bus control . 6

defined . 46
in status word . 10

E

EEPROM, defined . 46
environmental specifications 45
error

bad parity .29, 35
manchester code violation 29
message, in status word 10
mismatched data . 29
noncontiguous . 35
noncontinuous . 29
system, printing . 21
timeout .29, 35
too few words received 29, 35
too many words received29, 35
types. 29
unexpected sync bits 29, 35

error insertion . 22
example programs.16, 22

building
Linux . 4
Solaris. 4
Windows NT. 4

F

firmware, upgrading . 5

H

hardware scheduling
for bc_auto structures 39

host file . 42
host interrupt register 43
humidity specifications 45

I

inserting errors . 22
installing

verification . 3
instrumentation bit

in status word . 10
intermessage time .7, 22
ioctls

defined . 46
for mode codes27, 33
for status bits. 34
P53S_AUTO_CONT 36
P53S_AUTO_OFFSET 36
P53S_AUTO_SIZE 35
P53S_AUTO_TODO 36
P53S_AUTO_WAITCNT 36
P53S_CNT . 36
P53S_DUMP . 36
P53S_ERR . 36
P53S_GO. 36
P53S_LOAD . 36
performing . 20
responding to . 33

L

library routines . 16
p53b_close . 18
p53b_ioctl . 20
p53b_msleep . 21
p53b_open .17–18
p53b_perror . 21
p53b_read . 19
p53b_rtactive. 19
p53b_write . 20

M

masking
remote terminal subaddresses 28
remote terminals . 29

mc_buf structure . 33
memory

onboard . 2
memory specification. 45
mempci53bi . 26
message

error in status word 10
timing of . 7

message type
BC to all RTs broadcast 8
BC to RT transfer . 8
broadcast mode command, data word RT re-

ceive . 9
broadcast mode command, no data word . . . 9
format . 6
mode command, data word RT receive 9
mode command, data word RT transmit 9
54 EDT, Inc. May, 2000

PCI53B User’s Guide
mode command, no data word. 8
RT to all other RTs broadcast 8
RT to BC transfer . 8
RT to RT transfer . 8

MIL-STD 1553
compliance specification 45

MIL-STD 1553B . 2
described . 6
specification . 48

mode codes .6, 11
constants. 33
defined . 46
dynamic bus control 11
in command word . 9
inhibit terminal flag bit 11
initiate self test . 11
override inhibit terminal flag bit 11
override selected transmitter shutdown . . . 11
override transmitter shutdown. 11
reset remote terminal 11
responses to . 33
selected transmitter shutdown 11
sending with ioctls.27, 33
synchronize. 11
synchronize with data word. 11, 33
transmit built-in test word 11, 33
transmit last command 11, 33
transmit status word 11, 33
transmit vector word11, 33
transmitter shutdown 11

mode_data structure . 34
mode_sig structure . 34
monitor mask . 29

N

NOOP bit
in bc_auto structures 39

NORMAL return type 32

O

onboard memory. 2
opening the device. 17–18, 27

P

P53B_BADCV . 29
p53b_close . 18
P53B_DATAMATCH. 29
P53B_HIWORD. 29
p53b_ioctl . 20
P53B_LOWORD . 29

p53b_msleep . 21
P53B_NONCONT . 29
p53b_open . 17–18, 27
P53B_PARITY . 29
p53b_perror . 21
p53b_read . 19
p53b_rtactive. 19
P53B_SYNCERR . 29
p53b_write .20, 32
p53bi.h . 34
p53btest . 22
P53S_AUTO_CNT ioctl 36
P53S_AUTO_OFFSET ioctl 36
P53S_AUTO_SIZE ioctl 35
P53S_AUTO_TODO ioctl 36
P53S_AUTO_WAITCNT ioctl. 36
P53S_CNT ioctl . 36
P53S_DUMP ioctl . 36
P53S_ERR ioctl . 36
P53S_GO ioctl . 36
P53S_LOAD ioctl. 36
parity

command word. 9
defined . 46
status word . 10
timing. 7

PCI 53B
configuring . 3
configuring as 1553A 3
example program 22
overview of. 2

PCI Bus compliance specification 45
PCI Local Bus Specification 48
PCI Special Interest Group 48
power specification . 45
primary channel, defined 46

Q

q_elem data structure 28
queue mask. 28

R

RAM, defined . 46
rcv1553 . 25
reading data from the device 19
redundancy, defined . 46
references

MIL-STD 1553B specification 48
PCI Local Bus Specification 48

registers . 41–44
host interrupt . 43
EDT, Inc. June 2001 55

PCI53B User’s Guide
SPARC interrupt . 44
relative scheduling

for bc_auto structures 39
remote terminal

address . 6
in command word 9
in status word 10

broadcasting to . 6
configuring device driver as 27
defined . 47
example program 23
masking subaddresses 28
monitor mask . 29
subaddress . 6

in command word 9
removing driver

Linux . 4
Solaris. 4
Windows NT. 4

response time . 7
return type . 32
RT to all other RTs broadcast

example code . 31
RT to BC transfer

example code . 30
rt_buf structure . 30
rt_rt structure . 31
rttest . 23

S

Scheduling bc_auto Structures 38
scheduling bc_auto structures

absolute . 39
hardware . 39
NOOP . 39
relative . 39

secondary channel, defined 47
service request, in status word 10
setdebug . 25
setting the channel. 27
size specification . 45
software

specifications. 45
updating . 5

SPARC file . 43
SPARC interrupt register 44
specifications

humidity. 45
memory . 45
MIL-STD 1553 compliance 45
MIL-STD 1553B . 48
PCI Bus. 48

PCI Bus compliance 45
PCI Local Bus . 48
power . 45
size. 45
software . 45
temperature . 45
weight . 45

specifying intermessage gap. 22
status bits, setting with ioctls 34
status word . 10

broadcast command received 10
busy bit. 10
defined . 47
dynamic bus control 10
instrumentation. 10
message . 10
parity . 10
remote terminal address 10
service request . 10
subsystem flag . 10
synchronization. 10
terminal flag . 10

stdin . 25
stdout . 25
structures

bc_auto. 35
bc_buf . 29
mc_buf . 33
mode_data . 34
mode_sig . 34
rt_buf . 30
rt_rt . 31

stub . 12
defined . 47
length of .6, 14

subaddress mask . 29, 32
subaddress, defined. 47
subsystem flag, in status word 10
synchronization

command word. 9
defined . 47
status word . 10
timing. 7

T

temperature specifications 45
terminal flag in status word 10
testdriver . 26
testing the PCI 53B

example program 22
timing. 7
transferring data between remote terminals . . . 31
56 EDT, Inc. May, 2000

PCI53B User’s Guide
transformer . 12
transformer coupling12, 14

defined . 47
transmit/receive, in command word. 9

U

uninstalling
Linux . 4
Solaris. 4
Windows NT. 4

updating the software . 5
upgrading the firmware 5

V

verifying the installation 3

W

waiting for a specific subaddress 29, 32
weight specification . 45
word count, in command word 9
writing applications. 27
writing data to the device. 20

X

xmt1553 . 25
EDT, Inc. June 2001 57

	PCI53B
	PCI Bus to MIL-STD 1553B Interface
	USER’S GUIDE
	008-00967-02

	Overview
	Installation
	After Installing
	Configuring the PCI53B
	Verifying the Installation
	Building the Sample Programs
	Solaris or Linux Systems
	Windows NT/2000 Systems

	Uninstalling
	Solaris or Linux Systems
	Windows NT/2000 Systems

	Obtaining Software Updates
	Upgrading the Firmware
	Checking the Firmware Level
	Applying an Update

	About the MIL-STD 1553 Bus
	Bus Elements
	Message Types
	Command Word
	Status Word
	Mode Codes
	Table�1.�� Mode Codes

	Connecting to a 1553 Bus
	Connectors
	External Bus Coupling
	Table�2.�� Data Bus and Coupling Requirements

	Writing Applications
	PCI53B Library Routines
	Table�3.�� PCI53B Library Routines
	p53b_open
	Description
	Syntax
	Arguments
	Return

	p53b_rtopen_notactive
	Description
	Syntax
	Arguments
	Return

	p53b_close
	Description
	Syntax
	Arguments
	Return

	p53b_rtactive
	Description
	Syntax
	Arguments
	Return

	p53b_read
	Description
	Syntax
	Arguments
	Return

	p53b_bm_read
	Description
	Syntax
	Arguments
	Return

	p53b_write
	Description
	Syntax
	Arguments
	Return

	p53b_ioctl
	Description
	Syntax
	Arguments
	Return

	p53b_perror
	Description
	Syntax
	Arguments
	Return

	p53b_msleep
	Description
	Syntax
	Arguments
	Return

	P53G_RT_WAIT
	Description
	Syntax
	Return

	Example Applications
	p53btest
	bctest
	rttest
	bm
	setdebug
	xmt1553
	rcv1553
	testdriver
	mem_pci53bi

	Opening The PCI53B Driver
	Reading and Writing Data To and From the PCI53B
	In Bus Controller Mode
	In Remote Terminal Mode
	Queue Mask
	Transmit Queue Mask

	In Bus Monitor Mode
	Per-word Error Facilities

	Timestamp
	Clock Synchronization

	Read and Write Data Structures
	Using the Data Structures as a Bus Controller
	Using the Data Structures as a Remote Terminal
	Sending Mode Codes
	Receiving Mode Codes
	Table�4.�� Mode Code Responses
	Status Bits
	IOCTL Parameters

	Using Dynamic Bus Control
	Specifying Error Insertion and Intermessage Gap for System Tests
	Table�5.�� Error Codes
	bc_auto Structure

	Scheduling bc_auto Structures
	NOOP Bit
	Absolute Scheduling
	Relative Scheduling
	Hardware Scheduling

	Connector Pinout
	Table�6.�� Connector Pinout

	Registers
	Configuration Space
	Table�7.�� Configuration Space Status Field Values
	Table�8.�� Configuration Space Command Field Values

	PCI Local Bus Addresses
	Host File
	SPARC File
	Host Interrupt Register
	SPARC Interrupt Register

	Specifications
	Table�9.�� PCI Bus to MIL-STD 1553B Interface Specifications

	Glossary
	References
	Appendix A ioctl() Parameters

